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A Theorem about Primes 
Proved on a Chessboard 

An elementary treatment of a class of solutions to 
the n-queens problem leads to a proof of Fermat's 
theorem on primes which are sums of two squares. 

LOREN C. LARSON 
St. Olaf College 

Arrange queens on a 13 x 13 chessboard according to the following rule: place a queen on the 
center square and from it locate others by making successive (2, 3) movements - two squares to the 
right and three squares upward (top and bottom edges are identified, as well as right and left). The 
resulting queen placement (FIGURE 1) shows exactly one queen in each row and column, and no two on 
the same diagonal; as such, it is a solution to the n-queens problem (to place n nonattacking queens 
on the n x n chessboard) for n = 13. The solution is distinguished from other solutions in two 
respects: (i) it is regular, meaning that the queens are located at successive (s, t) movements from each 
other, for some integers s and t (a more precise definition will be given later), and (ii) it is doubly 
symmetric, meaning that it is invariant under a 900 rotation of the board about the center square. 

More generally, suppose that u and v are positive integers and u2+ v2 is an odd prime p. We will 
show that queens located at successive (u, v) movements from a queen on the center square of the 
p x p chessboard give a regular, doubly symmetric solution to the p-queens problem. Conversely, we 
will see that regular, doubly symmetric solutions to the p-queens problem, for p a prime, yield 
positive integers u and v such that u2+ v2 =p. In the final section we will show by a simple 
combinatorial argument that there is a regular, doubly symmetric solution to the p-queens problem 
whenever p is a prime of the form 4k + 1. Combining this result with the preceding implication gives a 
proof of Fermat's Two-Square Theorem: primes of the form 4k + 1 can be expressed as the sum of two 
squares. 

This proof of Fermat's theorem is both elementary and concrete. It avoids the usual first step of 
knowing that - 1 is a quadratic residue modulo p when p is a prime of the form 4k + 1. Moreover it 
uses the chessboard to provide a specific geometrical setting for illustrating and interpreting abstract 
concepts usually first encountered in an introductory abstract algebra course. The ideas on which this 
approach is based are scattered throughout references [1] and [2]. The chief insight - relating 
Fermat's Two-Square Theorem to the n-queens problem - is due to George Polya. 
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Preliminaries 

The additive group of integers will be denoted by Z, and Z,, = {1 2, 3, .. ., n} will denote the cyclic 
group of order n, having the operation of addition modulo n. If x is an integer, [x] will denote that 
integer between 1 and n inclusive which is congruent to x modulo n. (Since we will be working on an 
n x n chessboard, there will be no need to write [x],n to indicate the modulus.) There is little danger of 
confusion in using [x] to denote an element of Z and also an element of Zn, for the context will make 
the intention clear. 

For convenience we will identify the chessboard with the group Zn x Zn. Geometrically, the group 
element (i,j) represents the square in the ith column (from the left) and the jth row (from the 
bottom). A regular solution to the n-queens problem is a solution in which the queens are located on 
the squares (represented by the elements) of the coset (a, b) + ((s, t)) for some (a, b), (s, t) E Zn x Zn 
where ((s, t)) is the cyclic subgroup of Zn x Zn generated by (s, t). In this case, we will say that 
(a, b) + ((s, t)) is a regular solution. 

FIGURE 1 

It is important to observe that every regular solution can be expressed in the form (n, c) + ((1, d)) 
for some c, d E Z,n. For, suppose that (a, b) + ((s, t)) is a regular solution. We know that k (s, t) is a 
generator of ((s, t)) whenever k is an integer relatively prime to n. (Geometrically, the solution can be 
generated by many different regular movements.) Since s must be relatively prime to n in order that 
each column be occupied (similarly for t and the rows), there exists an integer r, relatively prime to n, 
such that rs 1 (mod n). For this r, r(s, t) is of the form (1, d) for some d E Z,n. Thus ( (s, t))= 
(r(s, t)) = ((1, d)). Since a queen occurs in column n, we have, for -some c E Zn, (n, c) E (a, b) + ((s, t)), 
or equivalently, (n, c) E (a, b) + ((1, d)). It follows, then, that (a, b) ? ((s, t)) = (n, c) ? ((1, d)). (For the 
example in the introduction, c =3 and d = 8.) 

70~ IIIII x 
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We are interested in finding conditions on c and d so that (n, c) + ((1, d)) will be a solution to the 
n-queens problem. It is easy to see that a necessary condition is that d be relatively prime to n (so that 
each row be occupied); but this is not sufficient, since, for ex`ample, d = 1 violates the diagonal 
requirements. Notice that two queens lie on the same rising diagonal (diagonals having slope 1) if the 
differences (in Z) of their coordinates are the same, and on the same falling diagonal if the sums (in Z) 
of their coordinates are equal. For the coset above, queens are located on the squares (i, [c + id]) for 
i = 1, 2,..., n. Since i + [c + id] c + i(d + 1) (mod n), the sums of these coordinates will be different 
provided that d + 1 is relatively prime to n. Similarly, since [c + id] - i c + i(d - 1) (mod n), the 
differences will be distinct if d - 1 is relatively prime to n. Thus, a sufficient condition for 
(n, c) + ((1, d)) to be a solution is that d - 1, d and d + 1 each be relatively prime to n. We leave it as 
an exercise to prove that this condition is also necessary. (Warning: this converse is not immediate 
since two of the coordinate sums (differences) may be equal in 4, but unequal in Z.) We summarize 
the preceding discussion in the following formal lemma: 

FUNDAMENTAL LEMMA. The placement (n, c) + ((1, d)) is a solution to the n-queens problem if and 
only if d - 1, d and d + 1 are each relatively prime to n. 

An immediate corollary helps explain why the 8-queeens problem is so much more difficult than 
the 7-queens problem, which most beginners solve very quickly. We will state and prove it here, even 
though we will not need it (nor, for that matter, the "only if" part of the Fundamental Lemma) for the 
main result of the paper. 

COROLLARY. There exists a regular solution to the n-queens problem if and only if n ? 1 (mod 6). 

Proof We have seen that regular solutions have the form (n, c)+((I, d)) for some c and d. If 
n + 1 (mod 6) we get a regular solution by taking d = 2 (ordinary knight moves). However, for 
n 0, 2, 3, 4 (mod 6) we cannot have regular solutions since one of d - 1, d, d + 1 is divisible by 3 and 
at least one of them is even. 

From Number Theory to the Chessboard 

Suppose that p is an odd prime number and that u and v are positive integers such that 
u2 + v2= p. Choose an integer r so that r(u, v) = (1, d) for some d E Z,. Then r2u2+ r2v2 = r2p, 
12+ d2 0 (mod p) and therefore d2- 1(mod p). Thus (d + 1)(d - 1)d21 - 2 (mod p). It 
follows that d - 1, d and d + 1 are each relatively prime to p and therefore (1, d) movements will 
generate a regular solution. The center square has coordinates ((p + 1)/2, (p + 1)/2), so in order that 
(p, c) + ((1, d)) have a queen on the center square, it is necessary and sufficient that 

c + ( ) d (mod p) 

or 

(1) 2c+d 1 (modp). 

Suppose that c is so determined. Now under a 900 clockwise rotation, the queen located on the 
square (i, [c + id]) will rotate to the square ([c + id], [1 - iJ). But this square is occupied by a queen in 
(p, c)+((1, d)), since [c + [c + id]d] = [c + cd + id2] = [c(1 + d)- il = [(1- d)12)(1 + d)- i= 
[(1 - d2)/2)- il = [1 - il. Therefore the solution is doubly symmetric. 

From the Chessboard to Number Theory 

Suppose now that p is a prime and that (p, c) + ((1, d)) is a regular, doubly symmetric solution to 
the p-queens problem. Since the 2 x 2 board does not admit such a solution, the prime p is odd. 
Observe that a queen is located on the center square, since queens off the center come in sets of four, 
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these located at quarter turns from each other (rotational symmetry). (Incidentally, this shows that p 
has the form 4k + 1.) 

From among all the queens on the board, pick one that is closest to the queen on the center square; 
suppose it is located at a (u, v) movement from the center square. Because of rotational symmetry we 
may suppose that u and v are positive. (Other closest queens will be located at (v, - u), (- u, - v), 
and (- v, u) movements from the center square.) Because the solution is regular, no two queens can 
be located closer together than these two queens. (To get from one queen to another requires an 
i(l, d) E Zp X Zp movement for some integer i, and this same movement could be made from the 
center square.) 

The center queen and the two queens located at (u, v) and (v, - u) movements from it, occupy 
three vertices of a square region; the fourth vertex of this square is occupied by a queen in the solution 
since it is a (u, v) + (v, - u) E Zp x Zp movement from the center (and each summand is a multiple of 
a (1, d) movement). Furthermore, no queen in the solution will be located in the interior of this 
square (since that would violate our choice of u and v). In the same way, every queen on the board 
can be associated with a square region whose vertices are given by its own position and those queens 
at (u, v), (v, - u) and (u, v) + (v, - u) movements from it. It is understood that left and right, top and 
bottom edges are identified, so that squares which overlap an edge are continued on the opposite side 
(see FIGURE 2). In this way the p x p chessboard is dissected into p regions (one for each queen) each 
of equal area. Since the total area of the chessboard is p2, each individual square has an area equal to 
p. It follows that the side length of each square is \/p, and therefore, from the Pythagorean theorem, 
that p = u2+ V2. 

FIGURE 2 
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It may be instructive to point out that the queen positions in a regular solution are part of a lattice 
that extends to the entire plane. This can be seen algebraically by first observing that the mapping 
k: Z x Z -> Z x Zn defined by ((x, y))4 = ([x], [y]) is a group homomorphism. Let H be the cyclic 
subgroup of Z x Z generated by (u, v). Then the elements of (HO)4f` may be interpreted 
geometrically as the positions of the queens obtained by tiling the entire plane with copies of the 
chessboard having queens located on the squares Ho. However, (HO)O` is a subgroup of Z x Z, and 
therefore it is a lattice of dimension two, having a fundamental region of area equal to the absolute 
value of the determinant of the matrix gotten by expressing the lattice basis in terms of the canonical 
basis of Z x Z. Now an arbitrary regular solution to the n-queens problem is a translation of Ho for 
some cyclic group H of Z x Z, and this corresponds to the same translation in Z x Z of the subgroup 
(H4)f '. 

Fermat's Two Square Theorem 
In order to prove Fermat's result, we need to show that there is a regular, doubly symmetric 

solution to the p-queens problem whenever p is a prime of the form 4k + 1. To do this, we will count 
the total number of regular solutions for the p x p board in two different ways. 

LEMMA. The number of regular solutions to the p-queens problem, where p is a prime, is p(p - 3). 

Proof. We know that regular solutions have the form (p, c) + ((1, d)). Clearly we do not get a 
solution when d is p, p - 1, or 1. But any of the other p - 3 possibilities for d, in Zp, will produce 
regular solutions, since in these cases d - 1, d, and d + 1 will each be relatively prime to p. Since c can 
take on any of p values, the total number of regular solutions is p(p - 3). 

A second way of counting the regular solutions is to partition them into three classes, depending 
upon their symmetry - doubly symmetric, symmetric (invariant under a 1800 rotation but not a 900 
rotation), or nonsymmetric (no symmetry). The symmetries of the square consist of four reflections 
and four rotations, and these form a group G, under composition. If x denotes a regular solution and 
U E G, the regular solution which results from x by applying the transformation U will be denoted by 
xU. Two regular solutions x and y are essentially the same if and only if there exists a U E G such that 
xU = y. This is an equivalence relation on the set of all regular solutions. The equivalence class of a 
solution x consists of all those solutions that can be obtained from x by rotation and reflection. For 
each regular solution x, let HI- denote the set of all symmetries of x; that is, HI = {U E G I xU = x}. 
HI- is a subgroup of G. Furthermore, if U, V E G, xU = xV if and only if xUV- = x, and this happens 
if and only if UV- E HI-. It follows that the number of elements in the equivalence class of x is equal 
to the index of HI- in G, and this is 2, 4, or 8 depending upon whether x is doubly symmetric, 
symmetric, or nonsymmetric respectively. Thus we have the following lemma: 

LEMMA. The number of regular solutions to the n-queens problem is 2x + 4y + 8z, where x, y, z are, 
respectively, the number of essentially different doubly symmetric, symmetric, and nonsymmetric regular 
solutions to the n-queens problem. 

Now suppose that p is a prime of the form 4k + 1. Combining the results of the preceding two 
lemmas, we know that p(p -3) = 2x + 4y + 8z. Since, in this equation, p 1 (mod 4), it becomes 
2 2x (mod 4). But this completes the proof, since this last equation implies that x, the number of 
essentially different regular, doubly symmetric solutions, is not zero. 

Finally, we can show that the positive integers u and v in Fermat's result are unique. To do this, it 
is sufficient to prove that there are only two regular, doubly symmetric solutions to the p-queens 
problem - a single solution, and its horizontal reflection, both of which induce the same positive 
integers u and v for which u2 + v2 = p. So, suppose that (p, c) + ((1, d)) is a regular, doubly symmetric 
solution to the p-queens problem. Since a queen is located on the square (1, [c + d]), there must also 
be (by rotational symmetry) a queen on the square ([c + d], p). This means that 
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(2) c+[c+d]d-p (mod p). 

The fact that the center square is occupied means that (1) holds, so that we may substitute 
c (1 - d)12 from (1) into (2) to get 

(2 d)+( 2 d) p (mod p) 

which simplifies to 

(3) d2+ 1 O (mod p). 

Thus d satisfies x2 + 1 = 0 over the field Zp. Alternatively, if we substitute d 1 - 2c from (1) into (2) 
we see that c must satisfy x2 + (x - 1)2 = 0 over Zp. Thus the existence of a regular, doubly symmetric 
solution to the p queens problem, for p a prime of the form 4k + 1, also implies the existence of two 
solutions to each of the equations x2+ 1 = 0 and x2+ (x - 1)2 = 0 in 4. Since Zp is a field, these 
second order polynomial equations can have only two solutions in Zp, which implies that there can be 
only two possible values for d and c. But once one of these values is known, so is the other by equation 
(1), proving that there are at most two regular, doubly symmetric solutions to the p-queens problem 
when p is a prime. 

In conclusion, we note that these latter equations offer an alternative, albeit less elegant, 
procedure for proving the existence of a regular, doubly symmetric solution to the p-queens problem 
for p a prime of the form 4k + 1; simply choose d by (3) and c by (1) and apply the argument following 
equation (1). 
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