Future topics

1. (2006 Nov 27) Find all polynomials f such that $f(2 t)$ can be written as a polynomial in $f(t)$, i.e., for which there exists a polynomial h such that

$$
f(2 t)=h(f(t)) .
$$

Use the identity $\sin ^{2} 2 t=4 \sin ^{2} t\left(1-\sin ^{2} t\right)$ to show that $\sin t$ is not a polynomial. ${ }^{1}$
2. For a polynomial p and a natural number k, let $\left[t^{k}\right] p(t)$ denote the coefficient of t^{k} in $p(t)$. (If $k>\operatorname{deg} p$, then, naturally, $\left[t^{k}\right] p(t)=0$.) In our meeting of January 24 we observed that, since \mathbb{Z} is a ring, we obviously have

$$
\left(\forall k \in \mathbb{N}:\left[t^{k}\right] p(t) \in \mathbb{Z}\right) \Longrightarrow(\forall n \in \mathbb{Z}: \mathfrak{p}(n) \in \mathbb{Z}) .
$$

In words: if all a polynomial's coefficients are integers, then it takes integer values for integer arguments. We also noted that the converse is false, and gave some examples. New question: Is there any ring for which the converse is true? (See our notes for August 22 for a summary of what we know so far.)
3. Show that, if x, y, z are nonnegative real numbers, then ${ }^{2}$

$$
\frac{3 \sqrt{3}}{2 \sqrt{x+y+z}} \leq \frac{\sqrt{x}}{y+z}+\frac{\sqrt{y}}{z+x}+\frac{\sqrt{z}}{x+y} .
$$

4. Prove ${ }^{3}$ that $\left(4 \cos ^{2} 9^{\circ}-3\right)\left(4 \cos ^{2} 27^{\circ}-3\right)=\tan 9^{\circ}$.
5. A problem from Levin: Given a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive real numbers, does there necessarily exist a sequence $\left(b_{n}\right)_{n=1}^{\infty}$ of positive real numbers such that $\sum_{n=1}^{\infty} b_{n}=1$ and $\sum_{n=1}^{\infty} a_{n} b_{n}<\infty$?
6. Recall that, given vector spaces U and V (over some field F), we say that a function $\mathrm{f}: \mathrm{U} \rightarrow \mathrm{V}$ is linear if

$$
\begin{array}{rlrl}
& f(x+y) & =f(x)+f(y) \\
& \text { and } & f(\alpha x) & =\alpha f(x) \tag{2}
\end{array}
$$

for all $x, y \in U$ and all $\alpha \in F$. Are the conditions (1) and (2) independent? That is, is it possible for a function f to satisfy one but not the other?

[^0]
[^0]: ${ }^{1}$ Exercise 1.1.13 from Polynomials, by E.J. Barbeau.
 ${ }^{2}$ This problem was suggested to me by Dr. Byron Schmuland; it's based on an inequality in J. Michael Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities (Cambridge UP, 2004), 131.
 ${ }^{3}$ Titu Andreescu and Zuming Feng, 103 Trigonometry Problems (Boston: Birkhäuser, 2005), introductory problem \#16.

