Future topics

1. (2006 Nov 27) Find all polynomials f such that f(2t) can be written as a polynomial in f(t), i.e., for which there exists a polynomial h such that

$$f(2t) = h(f(t))$$

Use the identity $\sin^2 2t = 4 \sin^2 t (1 - \sin^2 t)$ to show that sin t is not a polynomial.¹

2. For a polynomial p and a natural number k, let $[t^k]p(t)$ denote the coefficient of t^k in p(t). (If k > deg p, then, naturally, $[t^k]p(t) = 0$.) In our meeting of January 24 we observed that, since \mathbb{Z} is a ring, we obviously have

$$(\forall k \in \mathbb{N}: [t^{\kappa}]p(t) \in \mathbb{Z}) \implies (\forall n \in \mathbb{Z}: p(n) \in \mathbb{Z}).$$

In words: if all a polynomial's coefficients are integers, then it takes integer values for integer arguments. We also noted that the converse is false, and gave some examples. New question: Is there any ring for which the converse is true? (See our notes for August 22 for a summary of what we know so far.)

3. Show that, if x, y, z are nonnegative real numbers, then²

$$\frac{3\sqrt{3}}{2\sqrt{x+y+z}} \le \frac{\sqrt{x}}{y+z} + \frac{\sqrt{y}}{z+x} + \frac{\sqrt{z}}{x+y}$$

- 4. Prove³ that $(4\cos^2 9^\circ 3)(4\cos^2 27^\circ 3) = \tan 9^\circ$.
- 5. A problem from Levin: Given a sequence $(a_n)_{n=1}^{\infty}$ of positive real numbers, does there necessarily exist a sequence $(b_n)_{n=1}^{\infty}$ of positive real numbers such that $\sum_{n=1}^{\infty} b_n = 1$ and $\sum_{n=1}^{\infty} a_n b_n < \infty$?
- 6. Recall that, given vector spaces U and V (over some field F), we say that a function f: $U \rightarrow V$ is *linear* if

$$f(x + y) = f(x) + f(y)$$
 (1)

and
$$f(\alpha x) = \alpha f(x)$$
 (2)

for all $x, y \in U$ and all $\alpha \in F$. Are the conditions (1) and (2) independent? That is, is it possible for a function f to satisfy one but not the other?

¹Exercise 1.1.13 from *Polynomials*, by E.J. Barbeau.

²This problem was suggested to me by Dr. Byron Schmuland; it's based on an inequality in J. Michael Steele, *The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities* (Cambridge UP, 2004), 131.

³Titu Andreescu and Zuming Feng, 103 Trigonometry Problems (Boston: Birkhäuser, 2005), introductory problem #16.