
Math Club Notes: 2007 August 22

1 Cauchy’s theorem and the cubes mod p

Previously, in math club:
We have considered the cubes mod p, observing that, for example, with p =

13 every cube has three cube roots:

k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

k3 mod 13 5 5 1 −1 5 −1 0 1 −5 1 −1 −5 −5

On the other hand, with p = 17 every cube has exactly one cube root:

k −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

k3 mod 17 −2 −3 5 −6 4 7 −8 −1 0 1 8 −7 −4 6 −5 3 2

We have shown (see our notes for April 4) that these are the only two possibil-
ities, that is, in any field either every cube has one cube root or every cube has
three cube roots. We also noted by a simple counting argument that if cubes
in Zp have three cube roots then p is of the form 3k + 1. We conjectured the
converse as well, that is, that if p is of the form 3k + 1 then cubes in Zp have
three cube roots. Today we proved that conjecture using Cauchy’s theorem.1

Cauchy’s theorem says this:

If the order of a groupG is a multiple of a prime q, then the number
of solutions to xq = 1 in G (where 1 is the identity of G) is also a
multiple of q.

Note that the equation xq = 1 has at least one solution, namely x = 1, so an im-
mediate corollary is that the number of solutions is at least q. Our conjecture is
the special case q = 3 and G = U(p) (that is, {1, . . . , p− 1} under multiplication
mod p).

Now to prove Cauchy’s theorem.2

Consider sequences (x1, x2, . . . , xq) of q elements from G, having the prop-
erty that x1x2 � � � xq = 1. To count such sequences, note that we can choose the
first q− 1 elements of the sequence arbitrarily, then set xq = (x1x2 � � � xq−1)

−1.
Thus there are |G|q−1 such sequences. This is a multiple of q, since |G| is.

1This theorem, and its relevance to this problem, was pointed out to me by Dr. Weiss. Note,
incidentally, that Cauchy’s theorem can be restated thus: if the prime q divides |G|, then G has a
subgroup of order q. There are several theorems about the existence of subgroups of certain orders;
the big ones were, I think, proven by Sylow.

2The following proof is from [1]. My presentation is a lot more verbose than McKay’s.
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Now, note that if we move the last element of such a sequence to the begin-
ning, we obtain a new sequence with the same property, since

xqx1x2 � � � xq−1 = xqx1x2 � � � xq−1(xqx
−1
q )

= xq(x1x2 � � � xq−1xq)x
−1
q

= xqx
−1
q

= 1 .

(Note that we’re not assuming G to be Abelian, so we can’t just rearrange the
elements in the product.) Thus any cyclic permutation of such a sequence is
another such sequence.

Now, fix some such sequence x̄ = (x1, . . . , xq). Let σ denote the permuta-
tion that moves the last element to the beginning. Applying σ repeatedly to
our sequence yields a sequence of cyclic permutations of our sequence,

σx̄, σ2x̄, σ3x̄, . . . .

Now, suppose that σnx̄ = x̄. (This is certainly true for n = q, and might be true
for other n.) From number theory we know that, for suitable integers s and t,

gcd(n, q) = ns+ qt .

Thus
σgcd(n,q)x̄ = σns+qtx̄ = σnsσqtx̄ = (σn)s(σq)tx̄ = x̄ .

So σgcd(n,q) also fixes x̄. Thus if n is the least n such that σnx̄ = x̄, then n is a
divisor of q, that is, either n = 1 or n = q. In the case n = 1, we have σx̄ = x̄,
and so all the elements of x̄ are equal. In the case n = q, we have that the cyclic
permutations x̄, σx̄, σ2x̄, . . . , σq−1x̄ are all distinct.

So, if we consider sequences (x1, . . . , xq) to be equivalent if one can be ob-
tained from the other by a cyclic permutation, then the set of the |G|q−1 se-
quences under discussion is partitioned into equivalence classes of two types:
some classes have just one element, a sequence with all its elements equal —
say there are a classes of this type; the other classes have q elements, being
distinct cyclic permutations of some sequence — say there are b classes of this
type. Then we have

|G|q−1 = a+ bq ,

whence a is a multiple of q. And that’s what we wanted to show.
(I have seen one or two other proofs like this — that is, combinatorial proofs

of group-theoretic results. I quite like them. Maybe I’ll bring more to future
meetings.)

Steven Taschuk � 2009 September 6 � http://www.amotlpaa.org/mathclub/2007-08-22.pdf 2

http://www.amotlpaa.org/mathclub/2007-08-22.pdf


2 Infinitely many congruence classes

Previously, in math club:

Definition 1 Let A be a subring of R, and let p be a polynomial with coeffi-
cients in R. We say that p fixes A if p(t) 2 A for all t 2 A.

Definition 2 Let A be a subring of R. We say that A pins coefficients if ev-
ery polynomial which has real coefficients and fixes A must have coefficients
which are all in A.

On January 24 we observed that Z doesn’t pin coefficients; for example,
1
2
t(t+ 1) fixes Z but has coefficients not in Z.

On February 28 we observed that any ring is fixed by the identity polyno-
mial p(t) = t, and so any ring that pins coefficients must contain 1; by closure
under addition, any ring that pins coefficients must contain all of Z.

On March 7 we proved that every subfield of R pins coefficients. (So the
remaining question is whether there exist any rings which are not fields but do
pin coefficients.)

On May 30 we generalized the previous result on Z to show that if a ring
pins coefficients, then for every uninvertible element m in that ring, there are
infinitely many congruence classes modulom in that ring.

This last result seemed at the time like an extremely strong constraint on
a ring, so strong that I doubted there were any such rings (other than fields).
Following up a suggestion by Dr. Weiss, however, I quickly found one: Q[e].
This ring consists of numbers that can be written in the form

a0 + a1e+ a2e
2 + � � �+ ane

n (1)

for some rational numbers ai and some nonnegative integer n. That is, this
ring consists of rational linear combinations of powers of e.

The important thing about e for our purposes is that it is transcendental,
that is, it is not a zero of any polynomial with rational coefficients (except the
zero polynomial). One consequence is that every number in Q[e] has exactly
one representation in the form (1). Indeed, suppose that

a0 + a1e+ a2e
2 + � � �+ ane

n = b0 + b1e+ b2e
2 + � � �+ bne

n .

(We can assume these two representations have the same length, since if one is
shorter we can just add some zeroes at the end.) Then

(a0 − b0) + (a1 − b1)e+ (a2 − b2)e
2 + � � �+ (an − bn)e

n = 0 ,

showing that e is a zero of the polynomial on the left. Therefore that polyno-
mial is the zero polynomial, whence ai = bi for all i.
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Since such representations are unique, we can define the degree deg x of a
number x 2 Q[e] to be the highest power of e that occurs in its representation
with a nonzero coefficient. (We define deg 0 = −∞.) This notion of degree
is totally analogous to the notion of the degree of a polynomial (which is not
much of a surprise). In particular, we have the log-like rule3

deg(xy) = deg x+ degy .

(The definition of deg 0 was chosen to make this rule hold even when x =

0 or y = 0.) In particular,

deg x � 1 and degy � 1 =⇒ deg(xy) � 2 .

Thus, by contraposition,

deg(xy) � 1 =⇒ deg x � 0 or degy � 0 ,

and in particular, since it is rational numbers that have degree � 0,

xy 2 Q =⇒ x 2 Q or y 2 Q .

Moreover, if xy 6= 0, then x 6= 0, and so x 2 Q and xy 2 Q together imply y =

xy/x 2 Q; and likewise for y. Thus

xy 2 Q and xy 6= 0 =⇒ x 2 Q and y 2 Q .

This semi-obvious fact has several useful consequences. For one, it lets us
characterize the invertible elements of this ring. Indeed, suppose xy = 1. Since
1 2 Q and 1 6= 0, both x 2 Q and y 2 Q. Thus the only invertible elements
in Q[e] are the rationals.

For another, suppose that x, y 2 Q and x 6= y. If x � y (mod m), then
for some s, ms = x − y, which is rational and nonzero, whence m 2 Q. By
contraposition, if m is uninvertible (hence not rational), then distinct rational
x and y are incongruent modulom; thus there are at least as many congruence
classes modulom as there are rational numbers.

So this ringQ[e] has the desired property: every uninvertible element gives
rise to infinitely many congruence classes.

Consequently, our previous construction fails in this ring; we cannot con-
struct by the methods we already know a polynomial which fixes this ring but
has coefficients not in it. In other words, we don’t know whether this ring pins
coefficients or not. Determining that will require a new technique.

3It is somewhat instructive to consider why this rule can’t be made to work in rings Q[a] where
a is algebraic; consider Q[

p
2], for example.
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3 The determinant of a Vandermonde matrix

One of our outstanding problems (following up on an argument in our notes
of March 7) is to show that

�
�
�
�
�
�
�
�
�
�
�
�

1 r0 r20 . . . rn0
1 r1 r21 . . . rn1
1 r2 r22 . . . rn2
...

...
...

. . .
...

1 rn r2n . . . rnn

�
�
�
�
�
�
�
�
�
�
�
�

=
∏

0�i<j�n

(rj − ri) . (2)

During the meeting we came up with the following proof, the main idea of
which is to think of the two sides of this equality as polynomials in r0.

Case 1: For some i, ri = 0.
Without loss of generality (why?), r0 = 0. Thus the determinant in question

is
�
�
�
�
�
�
�
�
�
�
�
�

1 0 0 . . . 0

1 r1 r21 . . . rn1
1 r2 r22 . . . rn2
...

...
...

. . .
...

1 rn r2n . . . rnn

�
�
�
�
�
�
�
�
�
�
�
�

=

�
�
�
�
�
�
�
�
�

r1 r21 . . . rn1
r2 r22 . . . rn2
...

...
. . .

...
rn r2n . . . rnn

�
�
�
�
�
�
�
�
�

(expansion along first row)

= r1r2 � � � rn

�
�
�
�
�
�
�
�
�

1 r1 . . . rn−1
1

1 r2 . . . rn−1
2

...
...

. . .
...

1 rn . . . rn−1
n

�
�
�
�
�
�
�
�
�

(multilinearity of determinant)

= r1r2 � � � rn
∏

1�i<j�n

(rj − ri) (by induction)

=
∏

0�i<j�n

(rj − ri) (r0 = 0)

Case 2: Some two of the ri are equal.
Suppose ri = rj and i < j. Then the ith and jth rows of the matrix are equal,

so its determinant is zero. On the other hand, the product on the right-hand
side of (2) contains a factor (ri − rj), so it too is zero.

Case 3: The general case.
By the previous cases we may assume that none of the ri is zero and that

they are all distinct.

Steven Taschuk � 2009 September 6 � http://www.amotlpaa.org/mathclub/2007-08-22.pdf 5

http://www.amotlpaa.org/mathclub/2007-03-07.pdf
http://www.amotlpaa.org/mathclub/2007-03-07.pdf
http://www.amotlpaa.org/mathclub/2007-08-22.pdf


Define the functions

f(x) =

�
�
�
�
�
�
�
�
�
�
�
�

1 x x2 . . . xn

1 r1 r21 . . . rn1
1 r2 r22 . . . rn2
...

...
...

. . .
...

1 rn r2n . . . rnn

�
�
�
�
�
�
�
�
�
�
�
�

and
g(x) =

∏
1�i�n

(x− ri)
∏

1�i<j�n

(rj − ri) .

We wish to show that f = g. Since f and g are polynomials of degree at most n
(why?), it suffices to show that they agree at n+ 1 points.

The first n points are (ri)
n
1 . (As assumed above, these are n distinct points.)

Indeed, f(ri) = 0 for i 2 [1..n] since for such an argument, the first row of the
matrix equals some later row; and g(ri) = 0 for i 2 [1..n] since for such an
argument, the product contains a factor (ri − ri).

The last point is 0. (As assumed above, this is a distinct point from all
the ri.) Indeed, that f(0) = g(0) is exactly case 1.

And that completes the proof.
(I think I read somewhere that this result can also be proved by manipulat-

ing the determinant with row operations. I’ll look that up and report back.)
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