Math Club Notes: 2007 August 22

1 Cauchy’s theorem and the cubes mod p

Previously, in math club:
We have considered the cubes mod p, observing that, for example, with p =
13 every cube has three cube roots:

k | 6—5-4-3-2-1 01 2 3 4 5 6
Kmod13| 5 5 1-1 5-1 0 15 1-1-5-5

On the other hand, with p = 17 every cube has exactly one cube root:

k | -8 —7
k¥ mod 17 [ -2 =3

—6 -5 —4 —3 2
56 4 7 -8

o 1 2 3
6 8 —

—1 4 5 6 7 8

-1 0 1 74 6-5 3 2

We have shown (see our notes for April 4) that these are the only two possibil-
ities, that is, in any field either every cube has one cube root or every cube has
three cube roots. We also noted by a simple counting argument that if cubes
in Z, have three cube roots then p is of the form 3k + 1. We conjectured the
converse as well, that is, that if p is of the form 3k + 1 then cubes in Z, have
three cube roots. Today we proved that conjecture using Cauchy’s theorem.’

Cauchy’s theorem says this:

If the order of a group G is a multiple of a prime g, then the number
of solutions to x9 = 1in G (where 1 is the identity of G) is also a
multiple of q.

Note that the equation x4 = 1 has at least one solution, namely x = 1, so an im-
mediate corollary is that the number of solutions is at least q. Our conjecture is
the special case q = 3 and G = U(p) (thatis, {1,...,p — 1} under multiplication
mod p).

Now to prove Cauchy’s theorem.”

Consider sequences (x1,X2,...,Xq) of q elements from G, having the prop-
erty that x1x2 - - - x4 = 1. To count such sequences, note that we can choose the
first ¢ — 1 elements of the sequence arbitrarily, then set x4 = (x1x2---xq—1 ).
Thus there are |G|9~" such sequences. This is a multiple of g, since |G is.

I This theorem, and its relevance to this problem, was pointed out to me by Dr. Weiss. Note,
incidentally, that Cauchy’s theorem can be restated thus: if the prime q divides |G|, then G has a
subgroup of order q. There are several theorems about the existence of subgroups of certain orders;
the big ones were, I think, proven by Sylow.

2The following proof is from [1]. My presentation is a lot more verbose than McKay's.
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Now, note that if we move the last element of such a sequence to the begin-
ning, we obtain a new sequence with the same property, since
—1
XqX1X2 - - Xq—1 = XqX1X2 ="~ Xq—1 (quq )
—1
=xXq(x1%2 - -xq,1xq)xq
oy ]
=XqXq
=1.

(Note that we’re not assuming G to be Abelian, so we can’t just rearrange the
elements in the product.) Thus any cyclic permutation of such a sequence is
another such sequence.

Now, fix some such sequence X = (x1,...,%q). Let o denote the permuta-
tion that moves the last element to the beginning. Applying o repeatedly to
our sequence yields a sequence of cyclic permutations of our sequence,

0%, 0°%, 0°%, ... .
Now, suppose that ™% = . (This is certainly true for n = q, and might be true
for other n.) From number theory we know that, for suitable integers s and t,

ged(n, q) =ns+qt.

Thus
O.gcd(n,q))—( — ghstatg — gnsgdtg — (O‘n)S(O'q)tT( —x.

So 08°d(M4) also fixes %. Thus if n is the least n such that c™% = %, then n is a
divisor of q, that is, either n = 1 or n = q. In the case n = 1, we have ok =X,
and so all the elements of x are equal. In the case n = g, we have that the cyclic
permutations X, 0%, 0°%, ..., 097 "% are all distinct.

So, if we consider sequences (x1,...,Xq) to be equivalent if one can be ob-
tained from the other by a cyclic permutation, then the set of the |G|9~" se-
quences under discussion is partitioned into equivalence classes of two types:
some classes have just one element, a sequence with all its elements equal —
say there are a classes of this type; the other classes have q elements, being
distinct cyclic permutations of some sequence — say there are b classes of this
type. Then we have

IG|9"" =a+bq,

whence a is a multiple of q. And that’s what we wanted to show.

(Ihave seen one or two other proofs like this — that is, combinatorial proofs
of group-theoretic results. I quite like them. Maybe I'll bring more to future
meetings.)
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2 Infinitely many congruence classes

Previously, in math club:

Definition 1 Let A be a subring of R, and let p be a polynomial with coeffi-
cients in R. We say that p fixes Aif p(t) € Aforallt € A.

Definition 2 Let A be a subring of R. We say that A pins coefficients if ev-
ery polynomial which has real coefficients and fixes A must have coefficients
which are all in A.

On January 24 we observed that Z doesn’t pin coefficients; for example,
%t(t + 1) fixes Z but has coefficients not in Z.

On February 28 we observed that any ring is fixed by the identity polyno-
mial p(t) = t, and so any ring that pins coefficients must contain 1; by closure
under addition, any ring that pins coefficients must contain all of Z.

On March 7 we proved that every subfield of R pins coefficients. (So the
remaining question is whether there exist any rings which are not fields but do
pin coefficients.)

On May 30 we generalized the previous result on Z to show that if a ring
pins coefficients, then for every uninvertible element m in that ring, there are
infinitely many congruence classes modulo m in that ring.

This last result seemed at the time like an extremely strong constraint on
a ring, so strong that I doubted there were any such rings (other than fields).
Following up a suggestion by Dr. Weiss, however, I quickly found one: Q[e].
This ring consists of numbers that can be written in the form

ao+are+aze’ +--- +ape” 1)

for some rational numbers a; and some nonnegative integer n. That is, this
ring consists of rational linear combinations of powers of e.

The important thing about e for our purposes is that it is transcendental,
that is, it is not a zero of any polynomial with rational coefficients (except the
zero polynomial). One consequence is that every number in Q[e] has exactly
one representation in the form (1). Indeed, suppose that

ao+ are+aze’+---+anet =by+bre+bre? +---+bet.

(We can assume these two representations have the same length, since if one is
shorter we can just add some zeroes at the end.) Then

(a0 —bo) + (a1 —by)e+ (a2 —br)e + -+ (an —bn)e™ =0,

showing that e is a zero of the polynomial on the left. Therefore that polyno-
mial is the zero polynomial, whence a; = b; for all i.
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Since such representations are unique, we can define the degree deg x of a
number x € Q[e] to be the highest power of e that occurs in its representation
with a nonzero coefficient. (We define deg0 = —o0.) This notion of degree
is totally analogous to the notion of the degree of a polynomial (which is not
much of a surprise). In particular, we have the log-like rule®

deg(xy) = degx +degy .

(The definition of deg0 was chosen to make this rule hold even when x =
0 ory = 0.) In particular,

degx > 1and degy > 1 = deg(xy) > 2.
Thus, by contraposition,
deg(xy) <1 = degx < 0Oor degy <0,
and in particular, since it is rational numbers that have degree < 0,
xyeQ = x€QoryeqQ.

Moreover, if xy # 0, then x # 0, and so x € Q and xy € Q together imply y =
xy/x € Q; and likewise for y. Thus

xy€eQandxy#0 — x€Qandye€Q.

This semi-obvious fact has several useful consequences. For one, it lets us
characterize the invertible elements of this ring. Indeed, suppose xy = 1. Since
1€ Qand 1 # 0, bothx € Qand y € Q. Thus the only invertible elements
in Qle] are the rationals.

For another, suppose that x,y € Q and x # y. If x = y (mod m), then
for some s, ms = x —y, which is rational and nonzero, whence m € Q. By
contraposition, if m is uninvertible (hence not rational), then distinct rational
x and y are incongruent modulo m; thus there are at least as many congruence
classes modulo m as there are rational numbers.

So this ring Q[e] has the desired property: every uninvertible element gives
rise to infinitely many congruence classes.

Consequently, our previous construction fails in this ring; we cannot con-
struct by the methods we already know a polynomial which fixes this ring but
has coefficients not in it. In other words, we don’t know whether this ring pins
coefficients or not. Determining that will require a new technique.

31t is somewhat instructive to consider why this rule can’t be made to work in rings Q[a] where
a is algebraic; consider Qlv/2], for example.
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3 The determinant of a Vandermonde matrix

One of our outstanding problems (following up on an argument in our notes
of March 7) is to show that

1 1o r(z)
1 ™ T%
T 13
T T2

During the meeting we came up with the following proof, the main idea of
which is to think of the two sides of this equality as polynomials in 7o.

is

1T 0 0
T 1
T 12 13
1T rn 12
T T%
T2 T%
.
=TT2 Ty

Case 1: For some i, r; = 0.
Without loss of generality (why?), ro = 0. Thus the determinant in question

H (Tj —T13)

0<i<j<n

Case 2: Some two of the r; are equal.
Suppose 1; =15 and i < j. Then the ith and jth rows of the matrix are equal,

(expansion along first row)

(multilinearity of determinant)

(by induction)

(ro =0)

so its determinant is zero. On the other hand, the product on the right-hand
side of (2) contains a factor (r; —1j), so it too is zero.

Case 3: The general case.
By the previous cases we may assume that none of the 1; is zero and that

they are all distinct.
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Define the functions

1 x %2 X"

T 7 .17

2 n

f(x) = 1T 1 15 Ty
T 72 ™

and

g(x) = H (x —7) H (rj —7i).
1<i<n 1<i<j<n
We wish to show that f = g. Since f and g are polynomials of degree at most n
(why?), it suffices to show that they agree at n + 1 points.

The first n points are (1)} (As assumed above, these are n distinct points.)
Indeed, f(r;) = 0 for i € [1..n] since for such an argument, the first row of the
matrix equals some later row; and g(ri) = 0 for i € [1..n] since for such an
argument, the product contains a factor (r; — 1y).

The last point is 0. (As assumed above, this is a distinct point from all
the r;.) Indeed, that f(0) = g(0) is exactly case 1.

And that completes the proof.

(I think I read somewhere that this result can also be proved by manipulat-
ing the determinant with row operations. I'll look that up and report back.)
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