
Math Club Notes: 2007 May 30

1 Polynomials that commute with squaring

One of our outstanding problems:1 Find all polynomials which commute un-
der composition with t2, that is, find all polynomials f such that f(t2) = (f(t))2

for all t.
We first considered such f of low degree.
If f is constant, say f(t) = a, then a2 = a, that is, a = 0 or a = 1.
If f is of degree 1, say f(t) = at+ bwith a 6= 0, then

at2 + b = f(t2) = (f(t))2 = a2t2 + 2abt+ b2 .

Identifying the coefficients of t2 yields a = 1 (since a 6= 0); identifying the
coefficients of t yields ab = 0, which since a = 1 entails b = 0; and that,
happily, makes the constant coefficients equal too. So the only such polynomial
of degree 1 is f(t) = t.

If f is of degree 2, say f(t) = at2 + bt + c with a 6= 0, then. . . well, I’ll skip
the details, but a similar argument yields a = 1, b = 0, and c = 0, so the only
such polynomial of degree 2 is f(t) = t2.

It’s easy to become convinced at this point that the only such polynomials
are the zero polynomial and the power functions: 0, 1, t, t2, t3, . . . .

Here’s the beginning of a proof.
First note that if f is such a polynomial, then f(0) = f(02) = (f(0))2, so that

either f(0) = 0 or f(0) = 1.
If f(0) = 0, then t divides f(t), that is, f(t) = tg(t) for some polyno-

mial g. Then g also has the desired property, since t2g(t2) = f(t2) = (f(t))2 =

t2(g(t))2. Apply the same argument to g iteratively.
Either we can divide by t forever, in which case f is the zero polynomial, or

eventually we obtain f(t) = tng(t) with g(0) = 1. Let

g(t) =
∑
k�0

akt
k ,

where a0 = 1. We wish to show that ak = 0 for all k � 1 (so that g(t) = 1

and f(t) = tn). By hypothesis, g(t2) = (g(t))2, so

∑
k�0

akt
2k =

�∑
k�0

akt
k

�2
=
∑
k�0

∑
j�0

akajt
k+j =

∑
`�0

�∑̀
k=0

aka`−k

�
t` .

Now identify coefficients of like powers of t and prove by induction on k
that ak = 0 for all k � 1.

1E.J. Barbeau, Polynomials (Springer, 1989), exercise 1.1.21.
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2 A trigonometric inequality, two ways

The problem: prove2 that, in triangle 4ABC,

sin
A

2
� a

b+ c
.

(As per the usual convention, a, b, and c are the (lengths of the) sides opposite
the angles A, B, and C respectively.)

2.1 First solution

The solution given by Andreescu and Feng goes something like this:

a

b+ c
=

sinA
sinB+ sinC

(law of sines)

=
2 sin A

2
cos A

2

sinB+ sinC
(double-angle identity)

=
2 sin A

2
cos A

2

2 sin B+C
2

cos B−C
2

(sum-to-product identity)

=
2 sin A

2
cos A

2

2 sin 180�−A
2

cos B−C
2

(it’s a triangle)

=
2 sin A

2
cos A

2

2 sin(90� − A
2
) cos B−C

2

=
2 sin A

2
cos A

2

2 cos A
2

cos B−C
2

=
sin A

2

cos B−C
2

� sin
A

2
(since cos x � 1)

For free, we get that there’s equality just when B = C, that is, the triangle is
isosceles with vertex A.

The first couple steps are quite natural: the inequality relates sines of an-
gles to lengths of sides, so we use the law of sines; we then have sinA and
want sin A

2
, so we use the double-angle identity. I think you’d only think to

use the sum-to-product identity in the next step if you could see ahead a cou-
ple steps and anticipate some cancellations.

This is the kind of solution you come up with if you already know what
you’re trying to prove (and know your trig identities); the next solution is,
perhaps, a more likely way to discover the inequality.

2Titu Andreescu and Zuming Feng, 103 Trigonometry Problems (Boston: Birkhäuser, 2005), intro-
ductory problem #8.

Steven Taschuk � 2007 August 25 � http://www.amotlpaa.org/mathclub/2007-05-30.pdf 2

http://www.amotlpaa.org/mathclub/2007-05-30.pdf


2.2 Second solution

The first ingredient is what they call the “extended” law of sines:

a

sinA
=

b

sinB
=

c

sinC
= 2R ,

where R is the radius of the circle circumscribed around 4ABC. Note that if
we fix B and C but move vertex A along the arc it’s on, then the size of angle A
doesn’t change3 and of course the length of side a doesn’t change either. Thus
a/ sinA is constant as A varies along that arc.

A

B

C

a

2R

If we place A so that AB is a diameter of the circle, then C = 90� (Thales’
theorem), and we can read off that sinA = a/2R. The extended law of sines
follows.

(Well, we have to consider the case when A is on the other side of the
chord BC, where it cannot be placed to make AB a diameter. I’ll leave this
to you.)

The second ingredient is Ptolemy’s theorem: if ABCD is a simple cyclic
quadrilateral, then

|AC||BD| = |AB||CD|+ |AD||BC|

A

B

C

D

That is, the product of the diagonals is the sum of the products of the opposite
sides.

3Euclid III:21. See http://www.amotlpaa.org/math/iii21.html for an animated illustration.
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Now, suppose we have some triangle4ABC (with its circumcircle), and we
bisect angle A and extend the bisector to intersect the circumcircle4 at, say, P.

A

B

C

P

By Ptolemy’s theorem,

|AP||BC| = |AC||BP|+ |AB||CP| .

By the extended law of sines (for 4ABP), |BP| = 2R sin A
2

; likewise, |CP| =
2R sin A

2
. Thus we have

|AP||BC| = 2R(|AC|+ |AB|) sin
A

2
.

BC, AC, and AB are sides of4ABC, and their lengths are by convention a, b, c
respectively; using those names, we have

|AP|a = 2R(b+ c) sin
A

2
.

Rearranging,
a

b+ c
=
2R

|AP|
sin

A

2
.

The inequality then follows since 2R is the diameter of the circumcircle and
|AP| is a chord in it.

Again, the proof yields a condition for having equality: when the bisector of
angleA is a diameter of the circumcircle. (It is easy to verify that this condition
is equivalent to the one we had before.)

These two solutions are actually not as different as they might appear; the
combination of Ptolemy’s theorem and the law of sines is essentially the ad-
dition identity for sine, which in this case (since we’re bisecting the angle) re-
duces to the double-angle identity used in the first solution.

4See http://www.amotlpaa.org/math/incentre.pdf for a nifty result about this situation.
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3 A telescoping trigonometric product

A new problem:5 to show that

cos 20� cos 40� cos 80� =
1

8
.

Seeing the sequence 20, 40, 80, we naturally think of the double-angle identi-
ties. Or rather, we naturally think of the double-angle identity for cos; but it
turns out what we need is the double-angle identity for sin:

sin(2θ) = 2 sin θ cos θ .

Thus

cos 20� cos 40� cos 80� =
sin 40�

2 sin 20�
� sin 80�

2 sin 40�
� sin 160�

2 sin 80�
=

sin 160�

8 sin 20�
=
1

8
,

the last step since sin 160� = sin(180� − 20�) = sin 20�.
(This way to use the double-angle identity for sine to make a telescoping

product was mentioned in our notes for 2005 March 22.)
By the way, it’s conceivable to approach the problem by computing the

three cosines directly. A traditional method: if x = nπ/9 (where n 2 Z),
then sin(9x) = 0, and so

0 = Im(cos(9x) + i sin(9x))

= Im(cos x+ i sin x)9

= Im(cos9 x+ 9i cos8 x sin x− 36 cos7 x sin2 x− 84i cos6 x sin3 x+ � � � )
= 9 cos8 x sin x− 84 cos6 x sin3 x+ � � �

In this last expression, cos occurs only in even powers, which can be con-
verted to sin with the Pythagorean identity; this yields a polynomial of degree 9
in sin x. In fact, all the powers of sin are odd, so we can divide out one sin x to
get a polynomial of degree 4 in sin2 x. The zeroes of that polynomial are, then,
the values sin2(nπ/9).

Quartics are solvable (though hardly anybody actually knows the method
off the top of their head), so in principle you can find the value of sin(π/9) =
sin 20� this way, then use that to find the values in the question. It looks like a
lot of work, though.

(This is, however, a good way to find the values of sin(π/5) and cos(π/5);
we’ve all been taught the values of trig functions at π, π/2, π/3, π/4, and π/6,
and the π/5 values fill in that list nicely.)

5I read about this problem in Beyer, Louck and Zeilberger, “A generalization of a curiosity
that Feynman remembered all his life”, Mathematics Magazine 69(1) (February 1996), 43–44 (also at
http://www.math.temple.edu/∼zeilberg/mamarim/mamarimhtml/feynman.html; they quote
a Feynman anecdote from p. 47 of James Gleick’s book Genius.
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4 An arcsin identity

The identity:

2 arcsin
r
x

2
− arcsin(x− 1) =

π

2
.

For the LHS to be defined we require that x 2 [0, 2]. Rearranging, we wish to
show

2 arcsin
r
x

2
=
π

2
+ arcsin(x− 1) .

Both LHS and RHS here are in [0, π]; on this interval cos is one-to-one, so the
equality is equivalent to

cos
�
2 arcsin

r
x

2

�
= cos

�π
2
+ arcsin(x− 1)

�
,

which by a couple identities is equivalent to

1− 2 sin2 arcsin
r
x

2
= − sin arcsin(x− 1) ,

that is,
1− x = −(x− 1) ,

which of course is true.
The origin of this problem is a calculus exam question that Dr. Litvak men-

tioned to me, more or less to evaluate∫
1p

2x− x2
dx .

The traditional method is to complete the square and apply a trig substitution:∫
1p

2x− x2
dx =

∫
1p

1− (1− x)2
dx

= −

∫
1p
1− u2

du (u = 1− x)

= −

∫
1p

1− sin2 t
cos t dt (u = sin t; t 2 [−π

2
, π
2
])

= −

∫
1

cos t
cos t dt (cos t � 0 for t 2 [−π

2
, π
2
])

= −

∫
dt

= −t+ C

= arcsin(x− 1) + C .
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One of his students, however, thought of the following:∫
1p

2x− x2
dx = 2

∫
1p
2− x

� 1

2
p
x
dx

= 2

∫
1p
2− u2

du (u =
p
x)

= 2

∫
1q

1− (u/
p
2)2

� 1p
2
du

= 2 arcsin
up
2
+ C

= 2 arcsin
r
x

2
+ C .

If you’re marking such an exam, naturally your first reaction to the second
answer is that it must be wrong. But no; it turns out these two expressions
differ by a constant.

(It’s easy to find out what the constant is; just plug in x = 0, or x = 1.)
This background yields another approach to proving the identity: verify it

holds at one value, and check that the derivative of the (original) LHS is zero.

5 More rings that don’t pin coefficients

Previously, in math club:

Definition 1 Let A be a subring of R, and let p be a polynomial with coeffi-
cients in R. We say that p fixes A if p(t) 2 A for all t 2 A.

Definition 2 Let A be a subring of R. We say that A pins coefficients if ev-
ery polynomial which has real coefficients and fixes A must have coefficients
which are all in A.

On January 24 we observed that Z doesn’t pin coefficients; for example,
1
2
t(t+ 1) fixes Z but has coefficients not in Z.

On February 28 we observed that any ring is fixed by the identity polyno-
mial p(t) = t, and so any ring that pins coefficients must contain 1; by closure
under addition, any ring that pins coefficients must contain all of Z.

On March 7 we proved that every subfield of R pins coefficients. (So the
remaining question is whether there exist any rings which are not fields but do
pin coefficients.)

Before, we used the polynomial 1
2
t(t+ 1) to show that Z doesn’t pin coeffi-

cients. It’s a little tidier to use
1

2
t(t− 1)

instead. What makes this work is that there are just two equivalence classes
modulo 2 inZ; everything is congruent modulo 2 either to 0 or to 1. Put another
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way: for any integer t, either t − 0 is even or t − 1 is even. Thus their product
is even for all integers t, and so 1

2
(t − 0)(t − 1) 2 Z for all t 2 Z, which is

exactly the statement that this polynomial fixes Z. But its leading coefficient is,
of course, the non-integer 1

2
.

A similar construction works in some other rings. For example, consider
the equivalence classes modulo 2 in the ring

Z[
p
2] = {a+ b

p
2 : a, b 2 Z} .

It is easy to see that the multiples of 2 in this ring are just those a + b
p
2 for

which a and b are even. So:

if a and b are both even, then 2 divides a+ b
p
2;

if a is even and b is odd, then 2 divides a+ (b− 1)
p
2;

if a is odd and b is even, then 2 divides (a− 1) + b
p
2;

if a and b are both odd, then 2 divides (a− 1) + (b− 1)
p
2.

Thus, for any t 2 Z[
p
2], one of the numbers

t, t−
p
2, t− 1, t− 1−

p
2

is a multiple of 2. So the polynomial

1

2
t(t−

p
2)(t− 1)(t− 1−

p
2)

fixes Z[
p
2], despite having leading coefficient 1

2
/2 Z[

p
2].

So Z[
p
2] doesn’t pin coefficients.

(Considering this ring’s equivalence classes modulo
p
2 yields a simpler

polynomial.)
For another example, consider the ring Z[1

2
]. . . well, I’m not sure that nota-

tion is standard. What I mean is the ring consisting of all linear combinations
of powers of 1

2
with coefficients from Z. This ring can also be defined by

Z[1
2
] =

{
a

2n
: a, n 2 Z and n � 0

}
.

It consists of all numbers with finite binary expansions.
It turns out that Z[1

2
] has three equivalence classes modulo 3; everything is

congruent to 0, to 1, or to 2. (This might surprise you; it certainly surprised me.
Example: in this ring, 1

2
� 2 (mod 3), since 2− 1

2
= 3
2
= 3 � 1

2
is a multiple of 3.)

Thus the polynomial 1
3
t(t − 1)(t − 2) fixes this ring, despite having leading

coefficient 1
3
/2 Z[1

2
].

For general A (a subring of R but not a field), this construction goes like
this: Pick an element m 2 A whose inverse is not in A. Let {r1, r2, . . . , rk}
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be a complete system of equivalence class representatives for the relation of
congruence modulom on A. Then the polynomial

1

m
(t− r1)(t− t2) � � � (t− rk)

fixes A but has leading coefficient 1
m
/2 A, so A doesn’t pin coefficients.

The only way this construction can go wrong is if there are infinitely many
equivalence classes modulo m in A; then the polynomial constructed has infi-
nite degree and so isn’t a polynomial.

In summary: if A contains an uninvertible element m such that there are
finitely many equivalence classes modulo m in A, then A doesn’t pin coeffi-
cients. Thus if A does pin coefficients, then every uninvertible element in it
gives rise to infinitely many equivalence classes.

This seems like an extremely strong constraint on rings that pin coefficients.
I can only think of one situation where an element in a ring gives rise to in-
finitely many equivalence classes: the element 0. (Being congruent modulo 0
means differing by a multiple of 0, which means differing by 0, which means
being equal. So every element is in its own equivalence class modulo 0.) The
natural conjecture, then, is that no such ring exists; in other words, that pinning
coefficients is equivalent to being a field.

(Postscript: That conjecture didn’t last long; see our notes for August 22 for
an example of a ring satisfying this “extremely strong constraint”.)
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