
Math Club Notes: 2007 March 7

1 Fields pin coefficients

Previously, in math club:

Definition 1 Let R be a subring of R, and let p be a polynomial with coeffi-
cients in R. We say that p fixes R if p(t) 2 R for all t 2 R.

Definition 2 Let R be a subring of R. We say that R pins coefficients if every
polynomial which has real coefficients and fixes R must have coefficients which
are all in R.

On January 24 we observed that Z doesn’t pin coefficients; for example,
1
2
t(t+ 1) fixes Z but has coefficients not in Z.

On February 28 we observed that any ring is fixed by the identity polyno-
mial p(t) = t, and so any ring that pins coefficients must contain 1; by closure
under addition, any ring that pins coefficients must contain all of Z.

Today we looked at a proof that Q pins coefficients.
Let r0, r1, . . . , rn be some n+ 1 distinct rational numbers, and consider the

matrix

M =

2
6666664

1 r0 r20 . . . rn0
1 r1 r21 . . . rn1
1 r2 r22 . . . rn2
...

...
...

. . .
...

1 rn r2n . . . rnn

3
7777775

.

Note that if p is the polynomial

p(t) = a0 + a1t+ a2t
2 + � � �+ ant

n

then

M

2
6666664

a0

a1

a2

...
an

3
7777775
=

2
6666664

p(r0)

p(r1)

p(r2)
...

p(rn)

3
7777775

.

In particular, any solution to the homogeneous system Mx = 0 gives rise to
a polynomial p such that p(r0) = p(r1) = � � � = p(rn) = 0. Since the ri are
distinct, that means p has n + 1 roots; but it has degree at most n. So if p cor-
responds to a solution to Mx = 0, then p is the zero polynomial, and so all the
components of x are zero.

In other words: the homogeneous system Mx = 0 has only the trivial solu-
tion. That is, M is invertible.
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(We’ve just shown that if the ri are distinct, then M is invertible. The con-
verse is also true: if some two of the ri are equal, then two rows of M are equal,
so M’s rows are linearly dependent.)

Now we can prove that Q pins coefficients. Let p be a polynomial which
fixes Q. Let x be the vector corresponding to p, as above. Then, as above, the
ith component of Mx is p(ri). Since all the ri are rational, and p fixes Q, all
the p(ri) are rational. And since all the entries of M are rational, all the entries
of M−1 are rational. Thus

x = M−1

2
64

p(r0)
...

p(rn)

3
75

also has rational components. That is, the coefficients of p are rational, which
completes the proof.

This argument relies on only two properties of Q: first, that it’s infinite (so
it has at least n + 1 distinct elements); second, that if an invertible matrix has
rational entries then its inverse also has rational entries. Any subfield of R has
these properties, so we’ve actually shown the result for any such field.

So far, then, we know that all fields in R fix coefficients, and that any ring
in R that fixes coefficients must contain Z as a proper subring. We still don’t
know whether there are any rings that fix coefficients but are not fields.

2 A weird problem from Barbeau

Another problem from our list (Barbeau’s problem 1.8.4): Let p be a monic
quadratic polynomial with integer coefficients. Show that, for every integer n,
there exists an integer k such that p(n)p(n+ 1) = p(k).

The natural thing to try is to let

p(t) = t2 + bt+ c

and just write it all out: we want to find k in terms of n so that

(n2 + bn+ c)((n+ 1)2 + b(n+ 1) + c) = k2 + bk+ c .

Now, you could multiply out the LHS and try to bang it into the shape of the
RHS, but. . . well, it doesn’t look like a lot of fun.

It’s a little better to solve this problem by considering some special cases.
Let’s take p(t) = t2, the simplest monic quadratic polynomial. We wish to
find k in terms of n so that

n2(n+ 1)2 = k2 ,

and obviously k = n(n+ 1) will do.
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Let’s try p(t) = t2 + 1. We want k so that

(n2 + 1)(n2 + 2n+ 2) = k2 + 1 ,

that is, multiplying out and rearranging,

k =
p

n4 + 2n3 + 3n2 + 2n+ 1 = n2 + n+ 1 .

With a little luck we notice that in both cases we have k = p(n)+n. Proving
that this works is routine.

Much more interesting, though, is Barbeau’s solution. Let, he says,

q(t) = p(n+ t) .

q is a polynomial, since it is a composition of polynomials. Moreover, q is
a composition of a linear and a quadratic polynomial, both monic; so q is a
monic quadratic polynomial. Let

q(t) = t2 + bt+ c .

Then

p(n)p(n+ 1) = q(0)q(1) = c(1+ b+ c) = c2 + bc+ c = q(c) = p(n+ c) ,

and so obviously we can take k = n+ c.
Nifty, eh?
I suspect this idea — to notice the similarity of structure between two ex-

pressions (here, between p(n) = p(n + 0) and p(n + 1)) and to turn the point
where they differ into a parameter — to recur in other problems.
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