Math Club Notes: 2007 March 7

1 Fields pin coefficients

Previously, in math club:
Definition 1 Let R be a subring of \mathbb{R}, and let p be a polynomial with coefficients in \mathbb{R}. We say that p fixes R if $p(t) \in R$ for all $t \in R$.
Definition 2 Let R be a subring of \mathbb{R}. We say that R pins coefficients if every polynomial which has real coefficients and fixes R must have coefficients which are all in R.

On January 24 we observed that \mathbb{Z} doesn't pin coefficients; for example, $\frac{1}{2} t(t+1)$ fixes \mathbb{Z} but has coefficients not in \mathbb{Z}.

On February 28 we observed that any ring is fixed by the identity polynomial $p(t)=t$, and so any ring that pins coefficients must contain 1 ; by closure under addition, any ring that pins coefficients must contain all of \mathbb{Z}.

Today we looked at a proof that \mathbb{Q} pins coefficients.
Let $r_{0}, r_{1}, \ldots, r_{n}$ be some $n+1$ distinct rational numbers, and consider the matrix

$$
M=\left[\begin{array}{ccccc}
1 & r_{0} & r_{0}^{2} & \ldots & r_{0}^{n} \\
1 & r_{1} & r_{1}^{2} & \ldots & r_{1}^{n} \\
1 & r_{2} & r_{2}^{2} & \ldots & r_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & r_{n} & r_{n}^{2} & \ldots & r_{n}^{n}
\end{array}\right]
$$

Note that if p is the polynomial

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

then

$$
M\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
p\left(r_{0}\right) \\
p\left(r_{1}\right) \\
p\left(r_{2}\right) \\
\vdots \\
p\left(r_{n}\right)
\end{array}\right]
$$

In particular, any solution to the homogeneous system $M x=0$ gives rise to a polynomial p such that $p\left(r_{0}\right)=p\left(r_{1}\right)=\cdots=p\left(r_{n}\right)=0$. Since the r_{i} are distinct, that means p has $n+1$ roots; but it has degree at most n. So if p corresponds to a solution to $M x=0$, then p is the zero polynomial, and so all the components of x are zero.

In other words: the homogeneous system $M x=0$ has only the trivial solution. That is, M is invertible.
(We've just shown that if the r_{i} are distinct, then M is invertible. The converse is also true: if some two of the r_{i} are equal, then two rows of M are equal, so M's rows are linearly dependent.)

Now we can prove that \mathbb{Q} pins coefficients. Let p be a polynomial which fixes \mathbb{Q}. Let x be the vector corresponding to p, as above. Then, as above, the i th component of $M x$ is $p\left(r_{i}\right)$. Since all the r_{i} are rational, and p fixes \mathbb{Q}, all the $p\left(r_{i}\right)$ are rational. And since all the entries of M are rational, all the entries of M^{-1} are rational. Thus

$$
x=M^{-1}\left[\begin{array}{c}
p\left(r_{0}\right) \\
\vdots \\
p\left(r_{n}\right)
\end{array}\right]
$$

also has rational components. That is, the coefficients of p are rational, which completes the proof.

This argument relies on only two properties of \mathbb{Q} : first, that it's infinite (so it has at least $n+1$ distinct elements); second, that if an invertible matrix has rational entries then its inverse also has rational entries. Any subfield of \mathbb{R} has these properties, so we've actually shown the result for any such field.

So far, then, we know that all fields in \mathbb{R} fix coefficients, and that any ring in \mathbb{R} that fixes coefficients must contain \mathbb{Z} as a proper subring. We still don't know whether there are any rings that fix coefficients but are not fields.

2 A weird problem from Barbeau

Another problem from our list (Barbeau's problem 1.8.4): Let p be a monic quadratic polynomial with integer coefficients. Show that, for every integer n, there exists an integer k such that $p(n) p(n+1)=p(k)$.

The natural thing to try is to let

$$
p(t)=t^{2}+b t+c
$$

and just write it all out: we want to find k in terms of n so that

$$
\left(n^{2}+b n+c\right)\left((n+1)^{2}+b(n+1)+c\right)=k^{2}+b k+c .
$$

Now, you could multiply out the LHS and try to bang it into the shape of the RHS, but. . . well, it doesn't look like a lot of fun.

It's a little better to solve this problem by considering some special cases. Let's take $p(t)=t^{2}$, the simplest monic quadratic polynomial. We wish to find k in terms of n so that

$$
n^{2}(n+1)^{2}=k^{2}
$$

and obviously $k=n(n+1)$ will do.

Let's try $p(t)=t^{2}+1$. We want k so that

$$
\left(n^{2}+1\right)\left(n^{2}+2 n+2\right)=k^{2}+1
$$

that is, multiplying out and rearranging,

$$
k=\sqrt{n^{4}+2 n^{3}+3 n^{2}+2 n+1}=n^{2}+n+1
$$

With a little luck we notice that in both cases we have $k=p(n)+n$. Proving that this works is routine.

Much more interesting, though, is Barbeau's solution. Let, he says,

$$
\mathrm{q}(\mathrm{t})=\mathrm{p}(\mathrm{n}+\mathrm{t})
$$

q is a polynomial, since it is a composition of polynomials. Moreover, q is a composition of a linear and a quadratic polynomial, both monic; so q is a monic quadratic polynomial. Let

$$
\mathrm{q}(\mathrm{t})=\mathrm{t}^{2}+\mathrm{bt}+\mathrm{c} .
$$

Then

$$
p(n) p(n+1)=q(0) q(1)=c(1+b+c)=c^{2}+b c+c=q(c)=p(n+c)
$$

and so obviously we can take $k=n+c$.
Nifty, eh?
I suspect this idea - to notice the similarity of structure between two expressions (here, between $p(n)=p(n+0)$ and $p(n+1)$) and to turn the point where they differ into a parameter - to recur in other problems.

