
Math Club Notes: 2007 February 28

1 How many multiplications to evaluate a determinant?

A question on my CMPUT 204 (Algorithms) midterm explained how to evalu-
ate a determinant by using the Laplace expansion along the first row to reduce
the problem to evaluating some determinants of smaller order. We were asked
to formulate a recurrence for an, the number of multiplications needed to com-
pute an n� n determinant by this method.1

To compute one of the (n−1)�(n−1) subdeterminants involves an−1 mul-
tiplications. There are n subdeterminants (one for each entry in the first row),
so that’s nan−1 multiplications. Then we have to multiply each of those subde-
terminants by the corresponding entry in the first row, which is another n mul-
tiplications.

(We have to negate some of the subdeterminants; we don’t count that be-
cause negation is a much faster operation than multiplying, on conventional
hardware at least.)

So we have the following recurrence:

a1 = 0 ,

an = nan−1 + n for n � 2.

(Of course, computing a 1� 1 determinant involves no multiplications at all.)
The midterm also asked us what we can say about the order of growth of an

relative to n!. All they wanted us to do was to note that, since an > nan−1, we
expect that an > n! for sufficiently large n. More formally:

For n = 3, we have

a3 = 3a2 + 3 = 3(2a1 + 2) + 3 = 9 > 6 = 3! .

If n � 4 and an−1 > (n− 1)!, then

an = nan−1 + n > n(n− 1)! + n = n! + n > n! .

By induction, an > n! for all n � 3.

A glance at the first few values confirms that we haven’t made some stupid
error:

n 1 2 3 4 5 6 7

n! 1 2 6 24 120 720 5040

an 0 2 9 40 205 1236 8659

2n! 2 4 12 48 240 1440 10080

1There are more efficient ways to evaluate determinants; the point is to analyze this one.
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It turns out, as the third row of the table suggests, that we also have an < 2n!

for all n � 1. They didn’t expect us to notice or prove this on the midterm, so
we had a look at it in Math Club instead.

1.1 Attempt 1: Induction

First we tried to repeat what worked so well for proving an > n!.

For n = 1, we have
a1 = 0 < 2 = 2 � 1! .

If n � 2 and an−1 < 2(n− 1)!, then

an = nan−1 + n < 2n(n− 1)! + n = 2n! + n . . .

Curses.

1.2 Attempt 2: Induction again

Maybe, we thought, we can repair the inductive proof by proving something
slightly stronger2 than an < 2n!, something that looks like an � 2n! − bn. To
figure out what bn should be, let’s just write out the inductive step, and see
what we need.

If an−1 � 2(n− 1)! − bn−1, then

an = nan−1 + n � n(2(n− 1)! − bn−1) + n = 2n! − nbn−1 + n . . .

and at this point we want to write “= 2n!−bn”, since the point of the inductive
step is to show an � 2n! − bn. So we want bn to be such that

2n! − nbn−1 + n = 2n! − bn .

Simplifying and rearranging, we want

bn = nbn−1 − n .

Hm. We had hoped that the condition on bn would tell us what the bn have to
be, but the condition turned out to be very much the same kind of thing as the
recurrence we were trying to analyze in the first place.

2We’ve seen this idea of strengthening the inductive hypothesis before: see the first section of
our notes for 2006 February 9.
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1.3 A solution

We didn’t notice this in our meeting, but it turns out it is easier to find suit-
able bn, since in fact we only need bn � nbn−1 − n, not bn = nbn−1 − n. For
example, bn = 2 will work for n � 2. Thus we obtain the following solution:

For n = 2, we have
a2 = 2 = 2 � 2! − 2 .

If n � 3 and an−1 � 2(n− 1)! − 2, then

an = nan−1 + n � n(2(n− 1)! − 2) + n = 2n! − n < 2n! − 2 .

By induction, an � 2n! − 2 for all n � 2.

1.4 Attempt 3: Expansion

Next we unpacked the recurrence a few times, to see what pattern emerged.

an = nan−1 + n

= n
�
(n− 1)an−2 + n− 1

�
+ n

= n(n− 1)an−2 + n(n− 1) + n

= n(n− 1)
�
(n− 2)an−3 + n− 2

�
+ n(n− 1) + n

= n(n− 1)(n− 2)an−3 + n(n− 1)(n− 2) + n(n− 1) + n

Repeating this n− 1 times, we turn our recurrence into a sum:

an = n+ n(n− 1) + n(n− 1)(n− 2) + � � �+ n(n− 1)(n− 2) � � � (2) .

Radoslav noticed a good way to write this sum:

an = n!

�
1

(n− 1)!
+

1

(n− 2)!
+

1

(n− 3)!
+ � � �+

1

1!

�
.

He also remembered seeing a similar sum before:

e =
1

0!
+

1

1!
+

1

2!
+

1

3!
+ � � � .

Putting this all together yields. . .

1.5 A more righteous solution

First we show, by induction on n, that

an = n!

n−1∑
k=1

1

k!
for all n � 1. (1)
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For n = 1, the sum is empty, hence zero; and a1 = 0. If the result holds for n−1,
then

an = nan−1 + n = n(n− 1)!

n−2∑
k=1

1

k!
+ n = n!

�n−2∑
k=1

1

k!
+

n

n!

�
= n!

n−1∑
k=1

1

k!
,

which completes the proof of (1). An immediate corollary is that

an � n!

∞∑
k=1

1

k!
= n!

�
e−

1

0!

�
= n!(e− 1) < 2n! .

1.6 Another road to the more righteous solution

The recurrence can lead directly to the sum, if you know the right trick. Faced
with

an = nan−1 + n ,

we can divide by n! and obtain

an

n!
=

an−1

(n− 1)!
+

1

(n− 1)!
.

Now let cn = an/n!; then we have the recurrence

c1 = 0

cn = cn−1 +
1

(n− 1)!
for n � 2,

which is obviously just a sum in disguise.
This trick — dividing by something to convert a problematic coefficient into

part of a new variable and thus convert a recurrence into a sum — is a standard
one. For example, to solve the recurrence

h0 = 0 hn = 2hn−1 + 1

(which arises in the well-known Towers of Hanoi problem), divide by 2n to
obtain

hn

2n
=

hn−1

2n−1
+

1

2n−1
,

which immediately yields a sum for hn/2
n, and thence a solution for hn.

(This technique was also one of many deployed in the Mystical Dream Cac-
tus problem: see our notes for 2005 October 27.)
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2 A preliminary observation on “coefficient pinning” rings

Definition 1 Let R be a subring of R, and let p be a polynomial with coeffi-
cients in R. We say that p fixes R if p(t) 2 R for all t 2 R.

It’s easy to see that, if all the coefficients of p are in R, then p fixes R. We
noted in our meeting of January 24 that the converse is not true; for example,
the polynomial 1

2
t2 + 1

2
t fixes Z, but not all its coefficients are in Z. Naturally,

we wonder whether there are any rings for which the converse holds.

Definition 2 Let R be a subring of R. We say that R pins coefficients if every
polynomial which has real coefficients and fixes R must have coefficients which
are all in R.

Of course,R pins coefficients, but trivially, since we have framed everything
in terms of polynomials with real coefficients.3 Is there a smaller ring which
pins coefficients?

I thought I had a proof thatQ pins coefficients, but (as we discovered in the
meeting) it has a serious gap. Radoslav and I think we might have found an
alternative proof strategy; we might look at it next meeting.

We did succeed in proving one thing. Consider the polynomial p(t) = t.
Obviously p fixes every ring, so any ring which pins coefficients must contain
the coefficients of this polynomial, that is, any such ring must contain 1. From
closure under addition, and additive inverses, it then follows that such a ring
contains all integers. Since, as we’ve already seen, Z itself doesn’t pin coeffi-
cients, we have the following preliminary result:

Every ring which pins coefficients contains Z as a proper subring.

Thus we need not waste our time on rings such as 2Z.

3A more general formulation of the problem would express pinning coefficients as a property
that a ring has with respect to some specified superring.
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3 Two equivalent but rather different-seeming statements

A problem from our list: Let E be a measurable subset of Rn. Show that the
following are equivalent conditions on E:

(a) For any open set G � Rn which meets E, we have m(G \ E) > 0.

(b) For any continuous functions f, g : E → R, if f = g a.e., then f = g.

The proof is, as we will see, straightforward. The interest of the problem is just
that the two statements give quite different impressions, so it’s a little surpris-
ing that they’re equivalent (and that it’s not a big deal to prove it).

It is perhaps most convenient to prove the two implications by contraposi-
tion.

(not (a) ⇒ not (b)) Suppose that there exists an open set G � Rn such that
G \ E 6= ? and m(G \ E) = 0. Define f, g : E → R by

f(x) = 0 and g(x) = dist(x,GC) .

(The special case G = Rn, for which this g is ill-defined, is left to the reader.)
We compute that

x 2 E and f(x) 6= g(x) ⇐⇒ x 2 E and g(x) 6= 0 ⇐⇒ x 2 G \ E ,

since G is open. Thus the hypothesis that G \ E 6= ? means that f 6= g, while
the hypothesis that m(G \ E) = 0 means that f = g a.e.; the existence of such
f and g establishes the negation of (b).

(not (b) ⇒ not (a)) Suppose f, g : E → R are continuous functions such that
f = g a.e. and f 6= g. Since R \ {0} is open, its preimage under the continuous
function f − g is open in the relative topology of E, that is, for some open
set G � Rn we have

G \ E = (f− g)−1(R \ {0}) = {x 2 E : (f− g)(x) 6= 0} = {x 2 E : f(x) 6= g(x)} .

Thus the hypothesis that f = g a.e. means that m(G\E) = 0, while the hypoth-
esis that f 6= g means that G \ E 6= ?; the existence of such G establishes the
negation of (a), which completes the proof.
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