
Math Club Notes: 2007 January 10

1 Archimedes’ weird bisection lemma

One of our long-outstanding problems has been to prove Proposition 2 from
Archimedes’ Book of Lemmas: Let AB be the diameter of a semicircle, and let
the tangents to it at B and at any other point D on it meet in C. If now DE be
drawn perpendicular to AB, and if AC, DE meet in F, then DF = FE.
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I like to look at the bisection of DE as resulting from two “projection” opera-
tions. First, join AD and extend it to meet BC (extended) at G.
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Since DE ? AB and BC ? AB by construction, DE k BC. Therefore they are
cut in proportion by the pencil of lines through A; we have EF : FD = BC : CG.

Now, let the centre of the circle be O; join OC and OD.
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Since CB and CD are tangents from the same external point,4CBO = 4CDO,
whence \BOC = 1

2
\BOD. Since \BOD is the central angle on the same arc

as the inscribed angle \BAD, we have \BAD = 1
2
\BOD. Thus \BAD =

\BOC, and so AG k OC. Thus these lines cut off proportional segments on
their transversals; we have BC : CG = BO : OA.

Certainly O bisects AB, so we’re done.
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2 Area of an average rectangle

Another of our outstanding problems: Given n rectangles, each of area at
least 1. Let R be the rectangle whose width is the average of the given rectan-
gles’ widths and whose height is the average of the given rectangles’ heights.
Prove that R has area at least 1.

To prove this algebraically, we use the Cauchy-Schwarz inequality:
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For our problem, let the kth rectangle have width xk and height yk. We are
given that xkyk � 1 for all k. The area of the average rectangle is
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= 1 .

More geometrically, we can proceed by placing all the rectangles on the Carte-
sian plane, with their sides parallel to the axes and their bottom-left corners
at the origin. Then the kth rectangle’s upper-right corner is at (xk, yk); the
fact that xkyk � 1 means, then, that all these corners lie on or above the
curve xy = 1 (more specifically, the portion of it in the first quadrant).

The average rectangle’s upper-right corner is at the centre of gravity of the
given rectangles’ upper-right corners; since the region in question is convex,
the centre of gravity lies within it too, and so the average rectangle’s area is at
least 1.
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3 Tangents of a triangle’s angles

Yet another old problem: show that, if a, b, and c are the angles of a triangle,
then

tana+ tanb+ tan c = tana tanb tan c . (2)

(I got this problem from Eli Maor’s Trigonometric Delights.)
First recall (or derive afresh) the addition formula for the tangent function:

tan(u+ v) =
tanu+ tan v

1− tanu tan v
,

or, more conveniently for us,

tanu+ tan v = (1− tanu tan v) tan(u+ v) .

Now we compute as follows:

tana+ tanb+ tan c− tana tanb tan c

= (1− tana tanb) tan(a+ b) + tan c− tana tanb tan c

= (1− tana tanb)(tan(a+ b) + tan c)

= (1− tana tanb)(1− tan(a+ b) tan c) tan(a+ b+ c)

Now, since a, b, and c are the angles of a triangle, tan(a+b+c) = tan 180� = 0,
which establishes (2).

A few remarks:

1. In the computation above, we broke the symmetry between the three an-
gles by combining tana and tanb first. A symmetrical version of the
identity we needed:

tan(a+ b+ c) =
tana+ tanb+ tan c− tana tanb tan c

1− tana tanb− tanb tan c− tan c tana
.

2. The original identity is slightly wrong, or needs some careful interpreta-
tion: consider the case of a right-angled triangle.

3. Consider the following argument, similar to the one given above. Let a 2
R be such that tana 6= 0. Let b = arctan 1

tan a
. Then tanb = 1

tan a
, and so

tana tanb = 1 ,

so that 1− tana tanb = 0, whence

tana+ tanb = (1− tana tanb) tan(a+ b) = 0 .

But wait! If tana + tanb = 0, then tana and tanb must be of opposite
signs. But by construction their product is 1, which is positive, so they
have the same sign. What happened?

Steven Taschuk � 2007 April 7 � http://www.amotlpaa.org/mathclub/2007-01-10.pdf 3

http://www.amotlpaa.org/mathclub/2007-01-10.pdf


4 Dodgson’s sums of squares

Another old problem, this one from Pillow Problems by Charles L. Dodgson (aka
Lewis Carroll), originally published 1895 by Macmillan, republished 1958 by
Dover: “Prove that 3 times the sum of 3 squares is also the sum of 4 squares.”

The proof is just this identity:

3(a2 + b2 + c2) = (a+ b+ c)2 + (a− b)2 + (b− c)2 + (c− a)2 ,

which is easily verified. (The trick, of course, is coming up with it. Alas, I don’t
have much to say about how one does that.)

5 Reasons some functions aren’t polynomials

Another problem from our list: How do we know
p
t isn’t a polynomial? What

about logarithms? Exponentials?
There are several reasons for each type of function. In each case, we know

the Taylor series, and it isn’t finite. (In the case of square roots, we need to ex-
pand around, say, 1.) All these functions have infinitely many nonzero deriva-
tives.

In the case of
p
t, we should clarify a bit, since

p
t is only defined for t � 0

but polynomials are defined on all of R. So really we are asking: is there a
polynomial which agrees with

p
t for nonnegative t? In other words, doesp

t have a polynomial extension?
Another way to see that it doesn’t: the first derivative (from the right) of

p
t

at t = 0 is ∞. But the derivative of a polynomial is a polynomial, hence finite-
valued everywhere.

Another: if
p
t is a polynomial, it has some degree. Since

p
t isn’t con-

stant, deg
p
t � 1. But then, composing it with t2, we obtain

(
p
t)2 = t ,

which by taking degrees yields

(deg t2)(deg
p
t) = deg t ,

and so deg
p
t = 1

2
. But polynomials have integer degrees.

Another, pointed out by Vish: if
p
t is a polynomial, then, composing it the

other way with t2, we learn that
p
t2 = |t|

is a polynomial. But it isn’t. (|t| is different from t, but agrees with it at infinitely
many values; this can’t happen with polynomials.)
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As for the logarithm function, we could note that it has an asymptote. But
even easier is to recall that

log(t2) = 2 log t

and take degrees. A similar argument works for the exponential function.
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