1 A construction with straightedge alone

A problem I spotted on someone's Math 241 homework (paraphrased):
Given a circle, its diameter $A B$, and a point P lying neither on the circle nor on the given diameter extended, construct with straightedge alone a line passing through P and perpendicular to $A B$ (extended).
(The traditional solution using both compass and straightedge is Euclid I.12.)
Since the only thing a straightedge can do is join points to form lines (and thereby find new points as intersections), there's only so much you can try; so it's not hard to find the right construction.

Construction Join $P A$, intersecting the circle also at A^{\prime}. Join $P B$, intersecting the circle also at B^{\prime}. Join $A^{\prime} B$ and $A B^{\prime}$, and extend them to intersect at Q. Join $P Q$. Then $P Q \perp A B$, as desired.

Proof $A B$ is a diameter, so $\angle A A^{\prime} B$ and $\angle A B^{\prime} B$ are right angles (Euclid III.31). Thus the segments Q^{\prime} and PB^{\prime} are altitudes in $\triangle A P Q$, and so their point of intersection, B, is the orthocentre. Therefore $A B$ extended is the third altitude, and as such forms a right angle with PQ , as claimed.
(This construction ignores some special cases. Identifying them and patching things up is left as an exercise.)

2 Why sine isn't a polynomial

A few reasons why sine isn't a polynomial: it has infinitely many zeroes, but isn't the zero polynomial; its Maclaurin series isn't finite; it has infinitely many nonzero derivatives; it is bounded but not constant. Finally, a nifty one, exercise 1.1.13 from Polynomials, by E.J. Barbeau:

Find all polynomials f such that $f(2 t)$ can be written as a polynomial in $f(t)$, i.e., for which there exists a polynomial h such that

$$
f(2 t)=h(f(t))
$$

Use the identity $\sin ^{2} 2 t=4 \sin ^{2} t\left(1-\sin ^{2} t\right)$ to show that $\sin t$ is not a polynomial.

This one will go on the list of outstanding problems.

3 Making or

Last time we discussed our outstanding problem of showing that it's impossible to express \vee using only \neg and $\underline{\vee}$. The notes for 2006 Nov 20 include a solution for the similar problem of showing it's impossible to express \neg using only \wedge, \vee, and $\underline{\vee}$; we defined the set of boolean functions expressible with these operators recursively, then showed by structural induction that they all "fix zero", and observed that negation doesn't.

To find a similar proof for the problem of expressing \vee, we listed all sixteen boolean functions of two boolean variables A and B, and tried to express them all using \neg and $\underline{\vee}$.

0	0	1	1	A
0	1	0	1	B
0	0	0	0	$A \underline{\vee} A$
0	0	0	1	
0	0	1	0	
0	0	1	1	A
0	1	0	0	
0	1	0	1	B
0	1	1	0	$A \underline{\vee} B$
0	1	1	1	

0	0	1	1	A
0	1	0	1	B
1	0	0	0	
1	0	0	1	$\neg(A \underline{B})$
1	0	1	0	$\neg B$
1	0	1	1	
1	1	0	0	$\neg A$
1	1	0	1	
1	1	1	0	
1	1	1	1	$\neg(A \underline{\vee})$

It's pretty easy to find the above eight expressions. After fiddling for a while, it's easy to become convinced that they're the only ones that can be expressed using just \neg and $\underline{\vee}$. (Other candidate expressions, such as $(\neg A) \underline{\vee} B$, turn out to be equivalent to ones already listed.)

After staring at the table for a while, we notice what distinguishes those eight expressions from the other eight - the expressible functions have an even number of 1 s in their rows.

The simplest way to express this condition formally is:

$$
\begin{equation*}
f(0,0) \underline{\vee} f(0,1) \underline{\vee}(1,0) \underline{\vee} f(1,1)=0 \tag{*}
\end{equation*}
$$

(Note that \underline{V} is associative, so we don't need parentheses here.) So, to show that \vee cannot be expressed using only \neg and $\underline{\vee}$, we must show four things:

1. The functions $(A, B) \mapsto A$ and $(A, B) \mapsto B$ have property $(*)$.
2. If f has property $(*)$, then $\neg f$ has it too.
3. If f and g have property $(*)$, then $f \underline{\vee} g$ has it too.
4. The function $(A, B) \mapsto A \vee B$ does not have property $(*)$.

I leave the details as an exercise.

