
Math Club Notes: 2006 November 20

1 The rearrangement inequality

In our Putnam prep last Thursday, the speaker mentioned the rearrangement
inequality:

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be n-element sequences
of real numbers. Suppose a is increasing. Then, as σ varies over
all permutations of (1, . . . , n), the maximum value of ha, σ(b)i is
attained when σ(b) is increasing, and the minimum value when
σ(b) is decreasing.

Here’s a proof.
The case n = 1 is trivial. (The case n = 0 is even more trivial.)
Consider the case n = 2. Let a1 � a2 and b1 � b2. We wish to show that

a1b1 + a2b2 � a1b2 + a2b1 .

Indeed, a little rearrangement yields the equivalent inequality

(a2 − a1)(b2 − b1) � 0 ,

which certainly follows from a1 � a2 and b1 � b2. That’s the case n = 2.
Now for the general case. We will proceed by describing an algorithm1

for sorting a sequence — that is, permuting it so that it becomes increasing —
and showing that each step of the algorithm increases the value of the inner
product ha, bi.

Here’s the sorting algorithm: If b is sorted, stop. Otherwise choose some k
so that bk > bk+1, exchange bk and bk+1, and repeat.

First we should prove that the algorithm makes sense. The only question
here is whether such k always exists. Indeed, if not, that is, if bk � bk+1 for
all k, then b is sorted.

Next, we should prove that the algorithm terminates, that is, that b will
become sorted after finitely many steps of this algorithm. For this purpose,
consider the pairs (i, j) such that i < j and bi > bj; call such pairs “un-
sorts”. b is sorted if and only if there are zero unsorts. When the algorithm
exchanges bk and bk+1, these two values’ positions relative to other elements
in the sequence are unchanged (because bk and bk+1 are adjacent), and the
pair (k, k+ 1) stops being an unsort. Thus this step reduces the number of un-
sorts by one. Eventually, then, this number will reach zero; at that point b is

1Dijkstra uses this proof-by-algorithm approach to prove the AM/GM inequality; see our notes
for 2005 May 9.
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sorted and the algorithm terminates.2

Now, to prove the rearrangement inequality itself, we wish to show that
every step of this algorithm increases the dot product ha, bi. Let τ be the per-
mutation which exchanges bk and bk+1. If bk > bk+1, then

ha, bi = a1b1 + � � �+ akbk + ak+1bk+1 + � � �+ anbn

� a1b1 + � � �+ akbk+1 + ak+1bk + � � �+ anbn (by the case n = 2)

= ha, τ(b)i .

And that’s that.
Here’s another approach that might yield something: start with Lagrange’s

identity
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This identity is proven, and used to deduce the Cauchy-Schwarz inequality, in
our notes for 2005 May 22. It has the nice property of saying exactly what the
“defect” is in the Cauchy-Schwarz inequality — the sum

∑n
i=1

∑n
j=1(aibj −

biaj)
2 is exactly the amount by which ha, bi2 falls short of kak2kbk2. To show

the rearrangement inequality it would suffice to show that the defect is small-
est when σ(b) is increasing. (That might not be any easier than the original
version.)

2This proof of termination is typical. Note that the only reason we chose to exchange adja-
cent pairs in our algorithm (instead of arbitrary pairs in the wrong order) was to make this proof
simpler.
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2 Archimedes’ weird bisection lemma

We began looking at the following proposition from Archimedes’ Book of Lem-
mas:

Let AB be the diameter of a semicircle, and let the tangents to it
at B and at any other point D on it meet in C. If now DE be drawn
perpendicular to AB, and if AC, DEmeet in F, then DF = FE.

A B
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F

Here’s a hint. Let O be the centre of the circle, and add the lines shown here:

A B

C

D

E

F

O

With these auxiliary lines, we can describe the relevant segments trigonomet-
rically. For example, DE = sin\DOB (if we, wlog, take the circle to have
radius 1), and EF = AE cos\CAB. Continuing in this manner — and figur-
ing out the relationships between the angles — we can reduce the problem to
proving a certain trigonometric identity.
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3 Making not

We also looked a little at our outstanding problem of expressing ∨ using only
¬ and Y (that is, expressing inclusive-or using only negation and exclusive-or).
Or rather, proving that it is not possible to do so.

When proving that a certain operation can be expressed using others, we
always have the option of just writing down the relevant expression. For ex-
ample, to show that ∨ can be expressed using only ¬ and ∧ (and), we just write
down a variant of De Morgan’s laws:

A∨ B � ¬(¬A∧ ¬B) .

To show that ∨ can be expressed using only ∧ and Y, we write down

A∨ B � A Y B Y (A∧ B) .

The verification of these identities is routine.
But how can we prove that a certain operation cannot be expressed using

others? Here’s an example, showing that ¬ cannot be expressed using only
∧, ∨, and Y.

We are interested in functions taking (some number of) boolean arguments,
and returning a boolean value. For concreteness, we suppose the functions take
two arguments, A and B. We then define the expressible functions recursively
as follows:

1. The function (A,B) 7→ A is expressible.

2. The function (A,B) 7→ B is expressible.

3. If f and g are expressible, then the function f∧ g is expressible.

4. If f and g are expressible, then the function f∨ g is expressible.

5. If f and g are expressible, then the function f Y g is expressible.

These rules capture the notion of using ∧, ∨, and Y to build up larger expres-
sions. For example, the function (A,B) 7→ A Y (A ∨ B) is expressible, since
A and A∨ B are expressible.

Now, let us say that f fixes zero if f(0, 0) = 0. Obviously the projection
functions (A,B) 7→ A and (A,B) 7→ B fix zero. Moreover, if f and g both fix
zero, then (f ∧ g)(0, 0) = f(0, 0) ∧ g(0, 0) = 0 ∧ 0 = 0, so f ∧ g fixes zero
too. Similarly, f∨ g and f Y g fix zero. Therefore (by what they call “structural
induction”) any expressible function fixes zero.

The function (A,B) 7→ ¬A does not fix zero; therefore it is not expressible.
A similar style of proof can be given to show that ∨ cannot be expressed us-

ing only ¬ and Y. The trick, of course, is to find the property that all expressible
functions have but ∨ doesn’t.
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