
Math Club Notes: 2006 May 23

1 Boolean rings

Way back on 2005 May 2, at our first meeting ever, I mentioned a few examples
of “Boolean rings”, and suggested that the examples make sense of the name.
A much better summary can be found here: http://www.math.niu.edu/∼rusin/

known-math/99/boolean ring

2 Catalan’s identity

Back on 2006 Feb 9, we proved that
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by induction on n. Another approach is to interpret this sum as a Riemann
sum.

Consider the function f(x) = 1/x over the the interval [n, 2n]. Partition that
interval into subintervals by breaking it up at integer values; each interval is
then of width 1, so the Riemann sum obtained by evaluating f at the right end-
points of each interval is just the sum in question. Since f is strictly decreasing,
this sum is a strict underestimate of the true area under the curve; thus
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So if we happen to know that ln 2 < 3
4

(indeed, ln 2 � 0.69), then we could
solve the problem this way instead.

Of course, one might wonder how we would know that ln 2 < 3
4

. One way
is to consider the sum
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(This can be shown by deriving the Taylor series for the function ln(1 + x)

about x = 0, then taking x = 1. See also our notes for June 13.) This is an
alternating sum whose terms are strictly decreasing (in absolute value); thus
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its partial sums are bounds for its value:
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and so on. By continuing in this manner, we can get arbitrarily good bounds
on ln 2; eventually we will find out that ln 2 < 3

4
.

The connection between these sums is expressed directly in Catalan’s iden-
tity:1
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Vish and I worked out a proof of this identity by considering how to pair up
the terms on the left and right in the special case n = 4:
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The simplest idea is to pair each term on the left with one on the right; but this
can’t work, since there are only n terms on the left, but 2n on the right. Still,
the most natural thing to do for now is to pair them up by denominator:
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Now let’s introduce the missing terms on the left (and subtract them back out
again):
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Now what about the signs on the right? Let’s split up the positive terms and
negative terms:
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1I learned this name for it from Svetoslav Savchev and Titu Andreescu, Mathematical Miniatures,
Anneli Lax New Mathematical Library, Mathematical Association of America, 2003. (A wonderful
book that all of you should buy immediately.) Be aware that the name “Catalan’s identity” is also
used for F2n − Fn+kFn−k = (−1)n−kF2k (where Fn is the nth Fibonacci number).
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Now, we’d like to have 1
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, and 1
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on the right; then we can match the
whole first rows up. Add those terms in, and subtract them out again:
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The rest of the pairing is easy to see: the first unaccounted term on the left, −1
1

,
goes with the first unaccounted pair on the right, the two copies of −1

2
.

Putting this all together, we get the following argument:∑
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If the connection between the steps here and the previous fiddling-and-pairing-
up is opaque, write each sum out explicitly; e.g., the first line is
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3 Matrix problems

A couple problems from our list:

1. Two parts:

(a) Let A be an m � n matrix. Show that ATA is symmetric; conclude
that its eigenvalues are all real. Then show that they are all nonneg-
ative.
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The symmetry is easy: using the fact that (AB)T = BTAT , with
A,B := AT , A, we get

(ATA)T = AT (AT )T = ATA .

As we know from linear algebra, a symmetric matrix’s eigenvalues
are all real.
Now, suppose x is an eigenvector of ATA with associated eigen-
value λ, that is,

ATAx = λx .

What can we do with that? Recalling (AB)T = BTAT , we might
think to multiply by xT on both sides:

xTATAx = xTλx ;

in other words,
(Ax)T (Ax) = λxTx ;

in yet other words,
kAxk2 = λkxk2 .

Now, since x is an eigenvector, it is nonzero; so its norm is nonzero
too, and

λ =
kAxk2

kxk2
� 0 ,

as claimed.

(b) LetM be an n�n symmetric matrix with nonnegative eigenvalues.
Show that there exists a matrix A so thatM = ATA.
SinceM is symmetric, it is orthogonally diagonalizable, that is, there
exist an orthogonal matrix Q and a diagonal matrix D such that

M = QTDQ .

Moreover, the diagonal entries ofD are the eigenvalues ofM, which
are nonnegative. Thus they have square roots; let C be the diagonal
matrix whose entries are those square roots. Then C2 = D and CT =

C, so:

(CQ)T (CQ) = QTCTCQ = QTC2Q = QTDQ =M .

CQ is, then, the desired matrix.

2. What does adding I to a matrix do to its eigenvalues? Generalize.

Adding I to a matrix adds 1 to its eigenvalues. More precisely: x is an
eigenvector ofAwith eigenvalue λ if and only if x is an eigenvector ofA+
Iwith eigenvalue λ+1. The proof is straightforward from the definitions.
I’ll leave the generalizations to you.
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