
Math Club Notes: 2006 March 30

1 A triangle problem by Charles Dodgson

The problem:

In a given Triangle to place a line parallel to the base, such that
the portions of sides, intercepted between it and the base, shall be
together equal to the base.1

Another way to say it:

Given 4ABC, find points X and Y on AB and AC respectively such
that XY k BC and BX+ CY = BC.

The most awkward condition is that BX+ CY = BC. A natural way to dispose
of it is to rotate BX and CY down onto the base BC. The condition will be
satisfied iff X and Y come to rest on the same point on the base, say, P. So if we
can find this point P then we’ll be done.

A

B C

X Y

P

How to find this point? A little more analysis is needed. Join PX and PY. Now:
4BPX is isosceles, so \BXP = \BPX (as angles opposite equal sides). Also,
XY k BC, so \BPX = \PXY (as alternate interior angles). Therefore \BXP =

\PXY, that is, XP is the bisector of \BXY.

A

B C

X Y

P

Similarly YP is the bisector of \CYX. So XP and YP are the exterior bisectors
of4AXY; the interior bisector of\A is concurrent with them, hence also passes

1Problem #2 from Pillow Problems by Charles L. Dodgson (aka Lewis Carroll), originally pub-
lished 1895 by Macmillan, republished 1958 by Dover. Good ol’ Dover.
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through P. (Our notes for 2006 Jan 19 have a proof sketch of the concurrency
of the interior bisectors; it is easily extended to this situation.)

So here’s the construction: Bisect \A, and extend the bisector to inter-
sect BC at P. Lay off BX = BP and CY = CP on the sides; join XY.

2 Parameterizing the unit circle

Last time I mentioned that the unit circle {(x, y) : x2 + y2 = 1} can be parame-
terized by

x =
1− t2

1+ t2
and y =

2t

1+ t2
,

and asked if this t had any geometric interpretation (analogous to the famil-
iar interpretation of θ as a central angle in the more familiar parameteriza-
tion (x, y) = (cos θ, sin θ)).

It turns out that t = tan θ
2

, where θ is the familiar angle. The verification of
the relevant identities

cos θ =
1− tan2 θ

2

1+ tan2 θ
2

and sin θ =
2 tan θ

2

1+ tan2 θ
2

is left as an exercise. So are the proofs that the following two geometric inter-
pretations of t are sound:
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(x, y)

(1, 0)

}
t

Draw a tangent to the unit
circle at (1, 0). Also draw
a tangent at (x, y). Where
these tangents intersect is
t units up from the x-axis.
(Of course, for points on
the bottom half of the cir-
cle, the intersection is be-
low the x-axis and t is neg-
ative.)

(x, y)

(−1, 0)

}
t

Join (x, y) to (−1, 0). This
line intersects the y-axis at
a point t units up from the
origin. (Again, for half the
circle it’s negative.)

3 Some trivial trigonometric inequalities

Let’s prove that, for all θ,
−1 � sin θ � 1 .

(Why are we proving this familiar fact? Well, why not? Besides, we’re going to
do it in an unusual way.)
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Here’s one approach: for any θ 2 R,

− 1 � sin θ � 1

� {algebra}

sin2 θ � 1

� {algebra}

0 � 1− sin2 θ

� {Pythagorean identity}
0 � cos2 θ

� {squares are nonnegative}
true

(“�” here means “if and only if”. The {blurbs in braces} are brief hints2 about
why the thing before and the thing after are logically equivalent.)

This is a silly example of a nevertheless useful and common technique for
proving inequalities. Move everything to one side, so you’re proving some-
thing of the form 0 � A; then re-write A as the square of something.

Above we first turned the two inequalities −1 � sin θ � 1 into the single
inequality sin2 θ � 1, to which we then applied this write-as-a-square tech-
nique. It turns out we can prove the two inequalities directly using the same
technique. Note that

(sin t− cos t)2 = sin2 t− 2 sin t cos t+ cos2 t = 1− sin 2t . (1)

Thus, for any θ,

sin θ � 1

� {algebra}
0 � 1− sin θ

� {by (1), with t = θ
2
}

0 � (sin θ
2
− cos θ

2
)2

� {squares are nonnegative}
true

By considering (sin t+ cos t)2 we get a similar proof that −1 � sin θ.
Note, incidentally, the following:

cos2 2t = 1− sin2 2t (Pythagorean identity)

= (1− sin 2t)(1+ sin 2t) (difference of squares)

2The word “algebra” might not seem like much of a hint. The point of such a hint is to tell the
reader, not that algebra was used, but that nothing but algebra was used.
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And this:

cos2 2t = (cos2 t− sin2 t)2 (double-angle identity)

= (cos t− sin t)2(cos t+ sin t)2 (difference of squares)

The identity (1) (and its analogue with +) tells us that these two ways of using
difference of squares to factor cos2 2t actually yield the same factorization.

4 Euclid’s algorithm with linear algebra

(A favourite topic of mine.) Let’s find gcd(700, 119), and express it as their
linear combination.

�
700

119

�
=

�
5 � 119+ 105

119

�
(700� 119)

=

�
5 � 119+ 1 � 105

1 � 119+ 0 � 105

�

=

�
5 1

1 0

� �
119

105

�

=

�
5 1

1 0

� �
1 � 105+ 14

105

�
(119� 105)

=

�
5 1

1 0

� �
1 1

1 0

� �
105

14

�

=

�
5 1

1 0

� �
1 1

1 0

� �
7 1

1 0

� �
14

7

�
(105� 14)

=

�
5 1

1 0

� �
1 1

1 0

� �
7 1

1 0

� �
2 1

1 0

� �
7

0

�
(14� 7)

So gcd(700, 119) = 7. Note now that all these 2 � 2 matrices are invertible, so
we can move them over to the other side of the equality:

�
7

0

�
=

�
2 1

1 0

�−1 �
7 1

1 0

�−1 �
1 1

1 0

�−1 �
5 1

1 0

�−1 �
700

119

�

=

�
0 1

1 −2

� �
0 1

1 −7

� �
0 1

1 −1

� �
0 1

1 −5

� �
700

119

�
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At this point it is obvious that 7 is a linear combination of 700 and 119; linear
combinations are what matrices do. Indeed,

�
7

0

�
=

�
0 1

1 −2

� �
0 1

1 −7

� �
0 1

1 −1

� �
0 1

1 −5

� �
700

119

�

=

�
1 −7

−2 15

� �
0 1

1 −1

� �
0 1

1 −5

� �
700

119

�

=

�
−7 8

15 −17

� �
0 1

1 −5

� �
700

119

�

=

�
8 −47

−17 100

� �
700

119

�

=

�
8 � 700− 47 � 119

−17 � 700+ 100 � 119

�

and so 7 = 8 � 700− 47 � 119.
Isn’t that much tidier than in the typical treatment?
Note also in the second half of the computation, where the coefficients of

the linear combination are being found, how the first matrix on the various
right-hand sides evolves from line to line. After considering that for a while,
have a look at the following record of a computation:

700 47

119 5 8

105 1 7

14 7 1

7 2 0

The first and second columns are computed first, from top to bottom; then the
third column is computed, from bottom to top. The greatest common divisor
appears at the bottom left; the coefficients in the linear combination appear at
the upper right.

Exercise: figure out the method by comparing this table to the previous
matrix computation.
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5 Problem roundup

Some old, some new. (Some borrowed, some blue.)

1. (Jan 19) Prove that ∨ (inclusive or) cannot be expressed using only ¬

and Y (negation and exclusive or). [This problem was wrongly stated in
the notes for Feb 9; the ors were reversed.]

2. (Feb 9) Prove that
n∑
k=1

1

n+ k
=

2n−1∑
k=0

(−1)k

k+ 1
.

3. (Mar 30) “Let AB be the diameter of a semicircle, and let the tangents to
it at B and at any other point D on it meet in C. If now DE be drawn
perpendicular to AB, and if AC, DEmeet in F, then DF = FE.”3

A B

C

D

E

F

(Try to give both a trigonometric (q.v. section 2) and a geometric solution.)

4. (Mar 30) Given: n rectangles, each of area at least 1. Let R be the rectangle
whose width is the average of the given rectangles’ widths and whose
height is the average of the given rectangles’ heights. Prove that R has
area at least 1.

5. (Mar 30) “Prove that 3 times the sum of 3 squares is also the sum of
4 squares.”4

3This curious result is Proposition 2 from Archimedes’ Book of Lemmas.
4Dodgson’s problem #14, op. cit.. Try doing this one entirely in your head, as Dodgson suggests.
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