
Math Club Notes: 2006 January 12

1 Sum of every third binomial coefficient, again

An alternative method1 for one of our past problems, namely finding a closed
form for
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. (See our notes for 2005 Oct 27.)
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. Note that 1,ω, andω2 are the three

complex solutions of the equation z3 = 1. Now, by the binomial theorem,
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Adding these three equations together, we obtain

2n + (1+ω)n + (1+ω2)n = 3
∑
k

�
n

3k

�
,

since 1+ω+ω2 = 0. Now,

(1+ω)n = (1
2
+
p
3
2
i)n

= (cos π
3
+ i sin π

3
)n

= cos nπ
3

+ i sin nπ
3

(De Moivre’s theorem)

and similarly

(1+ω2)n = cos nπ
3

− i sin nπ
3

.

Putting it all together, ∑
k

�
n

3k

�
= 1
3
(2n + 2 cos nπ

3
) ,

which is equivalent to the first closed form we found before.
This method generalizes somewhat more easily than the previous method;

you might want to try working out
∑
k

�
n
4k

�
, for example, or even (if feeling

adventurous)
∑
k

�
n
mk

�
. (Or see the footnote.)

1This solution is a (very) special case of exercise 38 from section 1.2.6 of D. E. Knuth, The
Art of Computer Programming: Fundamental Algorithms, 3rd ed. (Reading: Addison-Wesley, 1997),
pp. 71, 487.
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2 Continued square root

Again, an alternative method2 for one of our past problems, namely evaluatingr
2+

q
2+

p
2+ � � � .

(See our notes for 2005 July 11.) As in our previous solution, let’s define the
sequence (an)n�0 by the recurrence

a0 = 0

an+1 =
p
2+ an

Then it is natural to say thatr
2+

q
2+

p
2+ � � � = lim

n→∞an ,

if this limit exists. (In fact this is just about the only reasonable way to define
the infinite expression in question.)

Suppose that for some n and θ, with −π < θ < π, we have

an = 2 cos θ .

Then

an+1 =
p
2+ 2 cos θ

= 2

r
1+ cos θ

2

= 2 cos
θ

2
.

(We need −π < θ < π to be sure that cos(θ/2) is nonnegative, hence equal to
this square root.) Since a0 = 2 cos π

2
, a simple induction shows that

an = 2 cos
π

2n+1
,

whence (2 cos x being a continuous function of x)

lim
n→∞an = 2 cos 0 = 2 .

Slick, eh? Alas, it does not generalize well; e.g., if we had 3s instead of 2s,
this method wouldn’t even get off the ground.

(How did anybody ever come up with this? Probably they were looking at
the values cos(π/2n) for some other reason — e.g., in connection with inscrib-
ing regular polygons of an ever-doubling number of sides in a circle. Indeed,
Gelfand and Saul use this result to approximate π.)

2I found this solution in I. M. Gelfand and M. Saul, Trigonometry (Boston: Birkhäuser 2001),
p. 163–166.
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3 An algebraic identity concerning circles

Given points P and Q. For which points X do we have \PXQ = 90�?

P

Q

We know the answer to this question from geometry: the locus of X is a circle
with PQ as diameter. What does this fact look like algebraically?

Consider the following identity:

(x− p)(x− q) =

�
x−

p+ q

2

�2
−

�
p− q

2

�2
.

To verify this, you could factor the right-hand side as a difference of squares;
or, if you prefer, you could expand the left-hand side and complete the square.

Now consider the following identity (where h , i represents an inner prod-
uct, such as the dot product, and k k represents the associated norm):

h~x− ~p,~x− ~qi = k~x− 1
2
(~p+ ~q)k2 − k1

2
(~p− ~q)k2 .

The algebra to verify this identity is exactly the same as the algebra to verify
the previous identity, just with the inner product instead of the usual product.
(Note how much nicer it is to expand k~ak2 as h~a, ~ai than as k~ak�k~ak; the former
has far better algebraic properties.)

From this identity it immediately follows that the statements

h~x− ~p,~x− ~qi = 0 and k~x− 1
2
(~p+ ~q)k = k1

2
(~p− ~q)k

are equivalent. The former states that the lines joining point ~x to points ~p and ~q

are orthogonal. The latter states that ~x lies on a circle centred at 1
2
(~p + ~q) and

of radius k1
2
(~p − ~q)k, which is exactly the circle with the line segment joining

~p and ~q as a diameter; this circle is, in fact, the intersection of the paraboloid z =
h~x − ~p,~x − ~qi with the xy-plane, in just the same manner as the points x =

p and x = q are the intersection of the parabola y = (x − p)(x − q) with the x-
axis.

4 Happy New Year!

2006 = 17� 17+ 1717.
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