
Math Club Notes: 2005 December 8

We looked at two of this year’s Putnam problems today.

1 A polynomial

The problem (Putnam 2005, B1):

Find a nonzero polynomial P(x, y) such that P(bac, b2ac) = 0 for all
real numbers a.

This is actually a pretty easy problem, if you have any experience with the floor
function, which it is convenient to define this way: for any real x and integer n,

n = bxc � n � x < n+ 1 . (1)

We are dealing with bac and b2ac. How are these related? Is the latter just
twice the former? Let’s see:

2bac = b2ac
� {(1), with n, x := 2bac, 2a}
2bac � 2a < 2bac+ 1

� {algebra}
bac � a < bac+ 1

2

� {algebra}
0 � a− bac < 1

2

So, they’re not the same in general, but we now know exactly when they are the
same: when the fractional part of a — that is, the amount by which a exceeds
the next integer down — is between 0 and 1

2
. (Note that, when a < 0, its

“fractional part” might not be what you expect; for example, the fractional
part of −3.2 is not 0.2, but −3.2 − b−3.2c = −3.2 − (−4) = 0.8. “Rounding
down” means “towards −∞”, not “towards 0”.)

What about the other possibility? Let’s see:

1
2
� a− bac < 1

� {algebra}
1 � 2a− 2bac < 2

� {algebra}
2bac+ 1 � 2a < 2bac+ 2

� {(1)}
2bac+ 1 = b2ac
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In summary, b2ac is either 2bac or 2bac + 1, depending on the fractional part
of a.

So what we want is that

P(n, 2n) = 0 and P(n, 2n+ 1) = 0

for all integers n. We notice that

(x, y) = (n, 2n) =⇒ 2x− y = 0

and

(x, y) = (n, 2n+ 1) =⇒ 2x− y+ 1 = 0

So here’s our polynomial:

P(x, y) = (2x− y)(2x− y+ 1) .

Whatever a is, one of these factors will come out to be zero when we evalu-
ate P(bac, b2ac).

2 An integral

The problem (2005 Putnam A5) is to evaluate the integral∫1
0

ln(x+ 1)
x2 + 1

dx .

(You might want to refresh your memory of
∫π
0

ln sin xdx, which we looked at
in the summer — see the notes for July 4.)

The first bit of my solution was just getting the integral into a form I was
more comfortable with. First, integrate by parts with

u = ln(x+ 1) v = arctan x

du =
dx

x+ 1
dv =

dx

x2 + 1

to determine that∫1
0

ln(x+ 1)
x2 + 1

dx = ln(x+ 1) arctan x
�
�
�
1

0
−

∫1
0

arctan x
x+ 1

dx

=
π

4
ln 2−

∫1
0

arctan x
x+ 1

dx

Doesn’t look much better, but let’s take a stab at this new integral. First try to
get rid of the arctan (because inverse trig functions scare me): let θ = arctan x.
Then x = tan θ, so dx = sec2 θdθ, and∫1

0

arctan x
x+ 1

dx =

∫π/4
0

θ sec2 θ
1+ tan θ

dθ
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No more inverse trig, but a bunch more trig. Secant also scares me; I prefer
cosine. So multiply and divide by cos2 θ:

=

∫π/4
0

θ

cos2 θ+ sin θ cos θ
dθ

“sin θ cos θ” looks familiar. Let’s multiply and divide by 2 and use the double-
angle identities.

=

∫π/4
0

2θ

2 cos2 θ+ 2 sin θ cos θ
dθ

=

∫π/4
0

2θ

1+ cos 2θ+ sin 2θ
dθ

That’s a lot of 2θ. Let a = 2θ.

=
1

2

∫π/2
0

a

1+ cosa+ sina
da

Call this expression I.
Notice the nice symmetry between cos and sin in this integral. Anything

that exchanges cos and sin will leave the denominator of this integrand un-
changed. . .

Substitute b = π
2
− a (so that also a = π

2
− b).

I =
1

2

∫0
π/2

π
2
− b

1+ cos(π
2
− b) + sin(π

2
− b)

(−db)

= −
1

2

∫0
π/2

π
2
− b

1+ cos(π
2
− b) + sin(π

2
− b)

db

=
1

2

∫π/2
0

π
2
− b

1+ cos(π
2
− b) + sin(π

2
− b)

db

=
1

2

∫π/2
0

π
2
− b

1+ sinb+ cosb
db (complementary angles)

=
1

2

∫π/2
0

π
2
− b

1+ cosb+ sinb
db

=
π

4

∫π/2
0

1

1+ cosb+ sinb
db−

1

2

∫π/2
0

b

1+ cosb+ sinb
db

=
π

4

∫π/2
0

1

1+ cosb+ sinb
db− I

Thus

I =
π

8

∫π/2
0

1

1+ cosb+ sinb
db .
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The b in the numerator (well, it was an a back then) has disappeared. Integrals
involving a mixture of functions of different types — e.g., trigonometric func-
tions and polynomials — are often more difficult than integrals involving just
one type. We just got rid of the polynomial part of our integrand; what’s left is
just trig. Major progress.

Now reverse the steps that brought us here:

I =
π

8

∫π/2
0

1

1+ cosb+ sinb
db

=
π

8

∫π/4
0

2

1+ cos 2t+ sin 2t
dt (t = 1

2
b)

=
π

8

∫π/4
0

2

2 cos2 t+ 2 sin t cos t
dt

=
π

8

∫π/4
0

1

cos2 t+ sin t cos t
dt

=
π

8

∫π/4
0

sec2 t
1+ tan t

dt (multiply/divide by sec2 t)

=
π

8

∫1
0

1

1+ u
du (u = tan t)

=
π

8

�
ln |1+ u|

�1
0

=
π

8
ln 2

(Note how at the last, the arctan is gone and life has become easy.) Substituting
back into where we started, we get∫1

0

ln(x+ 1)
x2 + 1

dx =
π

4
ln 2−

π

8
ln 2

=
π

8
ln 2 .

If you know your trig identities better than I do, you can use the idea here
much earlier in the computation; see the solution by Bhargava, Kedlaya, and
Ng at http://www.unl.edu/amc/a-activities/a7-problems/putnam/ to see how
that looks. (A key element in their solution is

cos θ+ sin θ =
p
2 cos(π

4
− θ) ,

which arises from the more familiar identity

cosα cosβ+ sinα sinβ = cos(α− β)

by taking α = π
4

.)
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