Math Club Notes: 2005 December 8

We looked at two of this year's Putnam problems today.

1 A polynomial

The problem (Putnam 2005, B1):
Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a.

This is actually a pretty easy problem, if you have any experience with the floor function, which it is convenient to define this way: for any real x and integer n,

$$
\begin{equation*}
\mathfrak{n}=\lfloor x\rfloor \equiv \mathrm{n} \leq x<\mathrm{n}+1 \tag{1}
\end{equation*}
$$

We are dealing with $\lfloor a\rfloor$ and $\lfloor 2 a\rfloor$. How are these related? Is the latter just twice the former? Let's see:

$$
\begin{aligned}
& \quad 2\lfloor a\rfloor=\lfloor 2 a\rfloor \\
& \equiv \quad\{(1), \text { with } n, x:=2\lfloor a\rfloor, 2 a\} \\
& \\
& 2\lfloor a\rfloor \leq 2 a<2\lfloor a\rfloor+1 \\
& \equiv \quad\{\text { algebra }\} \\
& \\
& \left\lfloor\lfloor a\rfloor \leq a<\lfloor a\rfloor+\frac{1}{2}\right. \\
& \equiv \quad\{\text { algebra }\} \\
& \\
& 0 \leq a-\lfloor a\rfloor<\frac{1}{2}
\end{aligned}
$$

So, they're not the same in general, but we now know exactly when they are the same: when the fractional part of a - that is, the amount by which a exceeds the next integer down - is between 0 and $\frac{1}{2}$. (Note that, when $a<0$, its "fractional part" might not be what you expect; for example, the fractional part of -3.2 is not 0.2 , but $-3.2-\lfloor-3.2\rfloor=-3.2-(-4)=0.8$. "Rounding down" means "towards $-\infty$ ", not "towards 0 ".)

What about the other possibility? Let's see:

$$
\begin{aligned}
& \quad \frac{1}{2} \leq a-\lfloor a\rfloor<1 \\
& \equiv \quad\{\text { algebra }\} \\
& \quad 1 \leq 2 a-2\lfloor a\rfloor<2 \\
& \equiv \quad\{\text { algebra }\} \\
& \\
& 2\lfloor a\rfloor+1 \leq 2 a<2\lfloor a\rfloor+2 \\
& \equiv \quad\{(1)\} \\
& \quad 2\lfloor a\rfloor+1=\lfloor 2 a\rfloor
\end{aligned}
$$

In summary, $\lfloor 2 a\rfloor$ is either $2\lfloor a\rfloor$ or $2\lfloor a\rfloor+1$, depending on the fractional part of a.

So what we want is that

$$
P(n, 2 n)=0 \quad \text { and } \quad P(n, 2 n+1)=0
$$

for all integers n. We notice that

$$
(x, y)=(n, 2 n) \Longrightarrow 2 x-y=0
$$

and

$$
(x, y)=(n, 2 n+1) \Longrightarrow 2 x-y+1=0
$$

So here's our polynomial:

$$
P(x, y)=(2 x-y)(2 x-y+1)
$$

Whatever a is, one of these factors will come out to be zero when we evaluate $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)$.

2 An integral

The problem (2005 Putnam A5) is to evaluate the integral

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
$$

(You might want to refresh your memory of $\int_{0}^{\pi} \ln \sin x d x$, which we looked at in the summer - see the notes for July 4.)

The first bit of my solution was just getting the integral into a form I was more comfortable with. First, integrate by parts with

$$
\begin{aligned}
u & =\ln (x+1) & v & =\arctan x \\
\mathrm{du} & =\frac{\mathrm{d} x}{x+1} & \mathrm{~d} v & =\frac{\mathrm{d} x}{x^{2}+1}
\end{aligned}
$$

to determine that

$$
\begin{aligned}
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x & =\left.\ln (x+1) \arctan x\right|_{0} ^{1}-\int_{0}^{1} \frac{\arctan x}{x+1} d x \\
& =\frac{\pi}{4} \ln 2-\int_{0}^{1} \frac{\arctan x}{x+1} d x
\end{aligned}
$$

Doesn't look much better, but let's take a stab at this new integral. First try to get rid of the arctan (because inverse trig functions scare me): let $\theta=\arctan x$. Then $x=\tan \theta$, so $d x=\sec ^{2} \theta d \theta$, and

$$
\int_{0}^{1} \frac{\arctan x}{x+1} d x=\int_{0}^{\pi / 4} \frac{\theta \sec ^{2} \theta}{1+\tan \theta} d \theta
$$

No more inverse trig, but a bunch more trig. Secant also scares me; I prefer cosine. So multiply and divide by $\cos ^{2} \theta$:

$$
=\int_{0}^{\pi / 4} \frac{\theta}{\cos ^{2} \theta+\sin \theta \cos \theta} \mathrm{d} \theta
$$

" $\sin \theta \cos \theta$ " looks familiar. Let's multiply and divide by 2 and use the doubleangle identities.

$$
\begin{aligned}
& =\int_{0}^{\pi / 4} \frac{2 \theta}{2 \cos ^{2} \theta+2 \sin \theta \cos \theta} \mathrm{~d} \theta \\
& =\int_{0}^{\pi / 4} \frac{2 \theta}{1+\cos 2 \theta+\sin 2 \theta} \mathrm{~d} \theta
\end{aligned}
$$

That's a lot of 2θ. Let $a=2 \theta$.

$$
=\frac{1}{2} \int_{0}^{\pi / 2} \frac{a}{1+\cos a+\sin a} d a
$$

Call this expression I.
Notice the nice symmetry between cos and sin in this integral. Anything that exchanges \cos and sin will leave the denominator of this integrand unchanged...

Substitute $b=\frac{\pi}{2}-a$ (so that also $a=\frac{\pi}{2}-b$).

$$
\begin{aligned}
I & =\frac{1}{2} \int_{\pi / 2}^{0} \frac{\frac{\pi}{2}-b}{1+\cos \left(\frac{\pi}{2}-b\right)+\sin \left(\frac{\pi}{2}-b\right)}(-d b) \\
& =-\frac{1}{2} \int_{\pi / 2}^{0} \frac{\frac{\pi}{2}-b}{1+\cos \left(\frac{\pi}{2}-b\right)+\sin \left(\frac{\pi}{2}-b\right)} d b \\
& =\frac{1}{2} \int_{0}^{\pi / 2} \frac{\frac{\pi}{2}-b}{1+\cos \left(\frac{\pi}{2}-b\right)+\sin \left(\frac{\pi}{2}-b\right)} d b \\
& =\frac{1}{2} \int_{0}^{\pi / 2} \frac{\frac{\pi}{2}-b}{1+\sin b+\cos b} d b \quad(\text { complementary angles) } \\
& =\frac{1}{2} \int_{0}^{\pi / 2} \frac{\frac{\pi}{2}-b}{1+\cos b+\sin b} d b \\
& =\frac{\pi}{4} \int_{0}^{\pi / 2} \frac{1}{1+\cos b+\sin b} d b-\frac{1}{2} \int_{0}^{\pi / 2} \frac{1}{1+\cos b+\sin b} d b \\
& =\frac{\pi}{4} \int_{0}^{\pi / 2} \frac{b}{1+\cos b+\sin b} d b-I
\end{aligned}
$$

Thus

$$
I=\frac{\pi}{8} \int_{0}^{\pi / 2} \frac{1}{1+\cos b+\sin b} d b
$$

The b in the numerator (well, it was an a back then) has disappeared. Integrals involving a mixture of functions of different types - e.g., trigonometric functions and polynomials - are often more difficult than integrals involving just one type. We just got rid of the polynomial part of our integrand; what's left is just trig. Major progress.

Now reverse the steps that brought us here:

$$
\begin{array}{rlr}
I & =\frac{\pi}{8} \int_{0}^{\pi / 2} \frac{1}{1+\cos b+\sin b} d b \\
& =\frac{\pi}{8} \int_{0}^{\pi / 4} \frac{2}{1+\cos 2 t+\sin 2 t} d t & \left(t=\frac{1}{2} b\right) \\
& =\frac{\pi}{8} \int_{0}^{\pi / 4} \frac{2}{2 \cos ^{2} t+2 \sin t \cos t} d t & \\
& =\frac{\pi}{8} \int_{0}^{\pi / 4} \frac{1}{\cos ^{2} t+\sin t \cos t} d t & \\
& =\frac{\pi}{8} \int_{0}^{\pi / 4} \frac{\sec ^{2} t}{1+\tan t} d t & \\
& =\frac{\pi}{8} \int_{0}^{1} \frac{1}{1+u} d u & \\
& =\frac{\pi}{8}[\ln |1+u|]_{0}^{1} & \\
& =\frac{\pi}{8} \ln 2 &
\end{array}
$$

(Note how at the last, the arctan is gone and life has become easy.) Substituting back into where we started, we get

$$
\begin{aligned}
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} \mathrm{~d} x & =\frac{\pi}{4} \ln 2-\frac{\pi}{8} \ln 2 \\
& =\frac{\pi}{8} \ln 2
\end{aligned}
$$

If you know your trig identities better than I do, you can use the idea here much earlier in the computation; see the solution by Bhargava, Kedlaya, and Ng at http://www.unl.edu/amc/a-activities/a7-problems/putnam/ to see how that looks. (A key element in their solution is

$$
\cos \theta+\sin \theta=\sqrt{2} \cos \left(\frac{\pi}{4}-\theta\right)
$$

which arises from the more familiar identity

$$
\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)
$$

by taking $\alpha=\frac{\pi}{4}$.)

