
Math Club Notes: 2005 December 1

We looked at some old Putnam problems.

1 A rational/irrational series

The problem:

For each k 2 N, let

Qk =
1

(k+ 2)!
+

2

(k+ 3)!
+

3

(k+ 4)!
+ � � � .

Prove that Qk is rational if and only if k = 0.

So we’re dealing with
Qk =

∑
n�1

n

(n+ k+ 1)!
.

Note, incidentally, that although each term in the sum is rational, so each par-
tial sum is rational, their limit could be rational or irrational.

I don’t really want to talk about this sum; let’s talk instead about the func-
tion

Qk(x) =
∑
n�1

nxn−1

(n+ k+ 1)!
.

Note that Qk = Qk(1).
(Introducing powers of x like this is a reasonably common maneuver when

dealing with sums. As we will see, it makes some otherwise challenging ma-
nipulations very easy. For more on strategies for evaluating sums, see Concrete
Mathematics, by Graham, Knuth, and Patashnik.)

(We should perhaps take a moment to prove that this power series con-
verges. I’ll just say that factorial beats everything, so it converges.)

Now for some sum manipulation. That nxn−1 is familiar.

Qk(x) =
d

dx

∑
n�1

xn

(n+ k+ 1)!
.

(This is a usual way to destroy an n in a sum; it’s also why we put in xn−1

instead of xn. But if you put in xn instead, you could just factor an x out of the
sum and then do this.) (How would you destroy a 1/n?)

Having gotten rid of the n, we now see that the terms are a power of x over
a factorial. That reminds us of

ex = 1+ x+
x2

2
+
x3

6
+ � � � =

∑
n�0

xn

n!
.
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So let’s try to get to something more like this sum for ex.

Qk(x) =
d

dx

∑
n�1

xn

(n+ k+ 1)!

=
d

dx

∑
n�k+2

xn−k−1

n!
(replace nwith n− k− 1)

=
d

dx

1

xk+1

∑
n�k+2

xn

n!

=
d

dx

1

xk+1

 
ex −

k+1∑
n=0

xn

n!

!

Excellent. Note that the remaining sum is finite — so, unlike when we started,
if each term is rational then that sum is too. Can we go back toQk now, that is,
take x = 1? Not quite — we have to differentiate first. So let’s do that:

Qk(x) =
1

xk+1

 
ex −

k+1∑
n=1

xn−1

(n− 1)!

!
−
k+ 1

xk+2

 
ex −

k+1∑
n=0

xn

n!

!
.

And then take x = 1:

Qk = Qk(1)

= e−

k+1∑
n=1

1

(n− 1)!
− (k+ 1)

 
e−

k+1∑
n=0

1

n!

!

= −ke−

k+1∑
n=1

1

(n− 1)!
+ (k+ 1)

k+1∑
n=0

1

n!

and, though this expression can be further simplified, for present purposes we
might as well stop here.

Everything except the ke is rational; so Qk is rational if and only if ke is.
Since e is irrational, ke is rational if and only if k = 0. And we’re done.
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2 An enumeration of the positive rationals

The problem:

Consider the recurrence

a0 = 1

a2n+1 = an

a2n+2 = an + an+1

Show that every positive rational occurs in the set{
an−1

an
: n � 1

}
=

{
1

1
,
1

2
,
2

1
,
1

3
,
3

2
, . . .

}
.

(Eileen noticed that we could use this result to show that Q is countable.)
The recurrence tells us about the sequence (an), but we wish to prove some-

thing about the sequence (an−1/an). Give that a name: let

bn =
an−1

an
.

The recurrence relates values of a near 2n to values of a near n. Can we get
similar relations for b? Yes:

b2n+1 =
a2n

a2n+1

=
an−1 + an

an

=
an−1

an
+ 1

= bn + 1 ,

and

b2n+2 =
a2n+1

a2n+2

=
an

an + an+1

=
an/an+1

an/an+1 + 1

=
bn+1

bn+1 + 1
.

What do these relations tell us? If bn = p/q, then

b2n+1 = bn + 1 =
p

q
+ 1 =

p+ q

q
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and

b2n =
bn

bn + 1
=

p/q

p/q+ 1
=

p

p+ q
.

So if we add the numerator to the denominator, we stay in the set; also if
we add the denominator to the numerator.

Note that p/q is in some sense a “smaller” fraction than (p+q)/q and p/(p+
q). Make that precise, and we have an inductive proof that every positive
rational occurs in the set, as follows.

In what follows, p and q always denote positive integers.
Suppose that every positive rational number p/q with max(p, q) �M is in

the set, and consider a positive rational number p/qwith max(p, q) =M+ 1.
If p > q, then p = max(p, q) = M + 1. Also, (p − q)/q is positive and

rational; since q is positive, p−q < p =M+1, and by hypothesis q < p =M+1,
so max(p − q, q) � M. By the inductive hypothesis, (p − q)/q is in the set,
say, bn = (p− q)/q. Then p/q = b2n+1 is also in the set.

If, on the other hand, p < q, then by a similar argument p/(q− p) is also in
the set, say, bn = p/(q− p). Then p/q = b2n is also in the set.

Finally, if p = q, then p/q = 1 = b1 is in the set.
By induction, every positive rational is in the set.
An alternative way to present this proof is by infinite descent: argue that

if p/q is not in the set, then either (for p < q) also p/(q− p) is not in the set, or
(for p > q) also (p − q)/q is not in the set. Repeat. Since max(p, q) decreases
when we subtract the lesser from the greater, and remains positive, this process
cannot continue forever; it must terminate, with p = q. But then we have
shown that p/q = 1 is not in the set, which is false.

Expressed this way, it’s perhaps a bit easier that the reduction step is just
Euclid’s algorithm. This sequence is thus closely related to the Farey tree, to
continued fractions, and all kinds of nifty stuff.

3 An eventually periodic sequence of integers

The problem:

Let (pn)n�1 be a bounded sequence of integers satisfying

pn =
pn−1 + pn−2 + pn−3pn−4

pn−1pn−2 + pn−3 + pn−4
.

Show that the sequence is eventually periodic.

There’s not much to this. Since the sequence is bounded, it contains only
finitely many values, say, k of them. A run of four consecutive values, then,
can take at most k4 different forms; the point is, that’s finite. So some such run

Steven Taschuk � 2010 January 5 � http://www.amotlpaa.org/mathclub/2005-12-01.pdf 4

http://www.amotlpaa.org/mathclub/2005-12-01.pdf


occurs twice. Since each pn depends only on the previous four terms, at that
point the sequence will begin repeating itself.

The tricky bit (such as it is) is just that the details of the expression given
are irrelevant.

4 Finding a minimum

The problem:

Find the minimum value of

(x+ 1/x)6 − (x6 + 1/x6) − 2

(x+ 1/x)3 + (x3 + 1/x3)

for x > 0.

We could, of course, differentiate and set the derivative to zero, etc.; but we are
not eager to differentiate this hideous thing. Can we simplify it first?

Turns out yes. The trick is to recall the identity

(a+ 1/a)2 = a2 + 2+ 1/a2 .

(“Recall”? When have we seen this? Well, I saw it in Math 115, when calcu-
lating arclengths. In order for the arclength integral to come out nicely, the
authors of such problems have to make a certain expression come out as a per-
fect square. This is one of the perfect squares they often use.)

Thus we can write our expression as

(x+ 1/x)6 − (x3 + 1/x3)2

(x+ 1/x)3 + (x3 + 1/x3)
.

Let a = (x + 1/x)3 and b = x3 + 1/x3 to see that the numerator is just a2 − b2

and the denominator is a+ b. Thus their quotient is a− b, that is,

(x+ 1/x)3 − (x3 + 1/x3) .

Multiply out the first term and cancel a couple things, and the expression be-
comes

3x+ 3/x .

Now it’s certainly feasible to differentiate, etc., as usual. Alternatively, since
we’re only interested in x > 0, we can apply the inequality of the arithmetic
and geometric means: we have

3x+ 3/x = 1
2
(6x+ 6/x) �

p
6x � 6/x = 6 ,

with equality exactly when 3x = 3/x, that is, x = 1. So the minimum value of
this expression (for x > 0) is 6.
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5 The eighth root of a continued fraction

The problem:

Express

8

vuuuut2207−
1

2207−
1

2207− � � �
in the form (a+ b

p
c)/d, where a, b, c, and d are integers.

Let’s assume for the moment that the infinite expression under the radical
converges. Then we can do our usual trick: call the eighth root x; then raising
both sides to the eighth power yields

x8 = 2207−
1

2207−
1

2207− � � �

,

whence (since the denominator of the topmost fraction is the same as the whole
right-hand side)

x8 = 2207−
1

x8
. (1)

(We did something like this once before, to evaluate
p
2+

p
2+ � � �; see our

notes for July 11.)
Now, the obvious thing to do at this point is to multiply through by x8 and

rearrange to get
x16 − 2207x8 + 1 = 0 ,

which is a quadratic in x8. Applying the quadratic formula, we get

x8 = 1
2
(2207�

p
22072 − 4) .

That gives x8 in the required form, but we want x in the required form, and the
best we can do in this approach is to say

x =
8

q
1
2
(2207�

p
22072 − 4) ,

which is not what we want.
What else can we do? From (1) we have

x8 +
1

x8
= 2207 .

That left-hand side looks a little like the expressions from the problem in the
previous section. So we can do this:

(x4 + 1/x4)2 = x8 + 2+ 1/x8 = 2209 .
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Wouldn’t it be nice if 2209were a perfect square? Turns out it’s 472. So

x4 + 1/x4 = 47 .

Now do the same thing again, to get

x2 + 1/x2 = 7 ,

and then again, to get
x+ 1/x = 3 .

And now we’ll multiply by x and solve the resulting quadratic, to get

x = 1
2
(3�

p
5) .

Much progress.
But is it + or −? Both of the values 3 �

p
5 are positive, so the fact that x is

supposed to be an eighth root doesn’t help. Turns out we have to understand
the continued fraction a little better.

About the only good way to define the expression 2207 − 1/(2207 − � � � ) is
as the limit of the sequence defined by the recurrence

a0 = 2207

an+1 = 2207− 1/an

if that limit exists. (Expand the first few terms in this sequence to see why this
is a good definition.)

A quick way to show that this sequence converges: define f(x) = 2207−1/x.
Since f 0(x) = 1/x2 > 0 for all x, this function is strictly increasing everywhere,
that is, a < b � f(a) < f(b). The point, of course, is that an+1 = f(an). So,
once we calculate that a1 = 2207− 1/2207 < 2207 = a0, we reason that

a1 < a0 � f(a1) < f(a0) � a2 < a1 .

Similarly, a3 < a2, and a4 < a3, and so on. (Insert inductive proof here.)
So the sequence (an) is strictly decreasing; if it’s also bounded below, it

converges. This is not too hard: we have an > 2206 for all n. This is immediate
for a0; for an+1 we have, by induction,

an+1 = 2207− 1/an > 2207− 1/2206 > 2207− 1 = 2206 .

What have we learned? The sequence (an) converges, so we can assign a
value to the continued fraction, namely the limit of that sequence. In fact, that
limit is at least 2206 (since each value in the sequence is greater than 2206).

This last observation lets us determine whether the eighth root is 1
2
(3 +p

5) or 1
2
(3 −

p
5). The latter is less than 1, so its eighth power is also less

than 1, which is certainly less than 2206. So it’s got to be 1
2
(3 +

p
5), which

completes the solution.
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6 A weird recurrence

The problem:

(xn)n�0 is a sequence of nonzero real numbers satisfying

x2n − xn−1xn+1 = 1

for all n � 1. Prove there exists a real number a such that xn+1 =

axn − xn−1 for all n � 1.

6.1 Solving the problem

We proceed by establishing that what we want to prove is equivalent to some-
thing which is obviously true. Note that, in what follows, we need to have �
(that is, logical equivalence), or at least ⇐ (that is, “follows from”) at every
step. Having⇒ is useless; we don’t care what follows from what we’re trying
to prove, but only what it follows from.

For convenience, let f(n) = (xn+1+xn−1)/xn. (We’ll see why this is conve-
nient in a minute.)

Now to the problem.

9a : 8n : xn+1 = axn − xn−1

� {solve for a; note that xn 6= 0}
9a : 8n : (xn+1 + xn−1)/xn = a

� {definition of f}
9a : 8n : f(n) = a

� {two fancy ways of saying f is constant} (2)

8m,n : f(m) = f(n)

� {⇒ by takingm = n+ 1;⇐ by induction}
8n : f(n) = f(n+ 1)

� {definition of f}
8n : (xn+1 + xn−1)/xn = (xn+2 + xn)/xn+1

� {algebra; note that xn 6= 0 and xn+1 6= 0}
8n : x2n+1 + xn−1xn+1 = x2n + xnxn+2

� {algebra} (3)

8n : x2n+1 − xnxn+2 = x2n − xn−1xn+1

� {hypothesis, for n and n+ 1}
8n : 1 = 1

� {= is reflexive}
true
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This solution is pretty straightforward, meaning that each step is the most nat-
ural thing to do. (Step (2), using two ways of saying a function is constant, we
have seen before; see Gowers’s derivation of the Cauchy-Schwarz inequality
in our notes for May 22. Step (3) is motivated by wanting to make use of the
hypothesis — the xn−1xn+1 belongs with the x2n, etc.)

Note, incidentally, that the 1 is not important; all that matters is that it’s a
constant.

6.2 How did they know?

The whole approach in the previous section relies on suspecting that there is
a recurrence of the form xn+1 = axn − xn−1. Once we have that conjecture,
proving it is not too hard. But how would we know there was such a recurrence
in the first place? How did the authors of the problem know?

Here’s a way one could find out there’s such a recurrence without too many
lucky guesses. Imagine we are studying sequences (xn)n�0 satisfying

x2n − xn−1xn+1 = 1

for all n � 1, and we simply wish to know whether anything interesting can
be said about them. (One such sequence is (0, 1, 3, 8, 21, . . . ), which consists of
every other Fibonacci number. This sequence has one zero in it, but it turns out
not to matter.)

First, we notice that what we have is the value of a determinant:���� xn xn+1

xn−1 xn

���� = 1 . (4)

And it’s awfully structured, this determinant; it’s not just four random values.
Each row consists of two consecutive elements of the sequence, and the top
row is just shifted one over from where the bottom row is.

What should the next row up be? Just continue the pattern:������
xn+1 xn+2

xn xn+1

xn−1 xn

������
The bottom two rows here form a determinant of the type we know something
about — the determinant in (4). And so do the top two rows — they’re just (4)
for n+ 1 instead of n.

Of course, a 3� 2 determinant doesn’t make sense — determinants have to
be square. So we should add a third column.������

α xn+1 xn+2

β xn xn+1

γ xn−1 xn

������
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It’s not clear yet what values we want in that column.
What we know about this 3 � 3 determinant is the values of two of the

2 � 2 subdeterminants. How do we relate 3 � 3 determinants to their 2 �
2 subdeterminants? By the Laplace expansion. Taking the expansion along the
first column, and using the fact that some of the subdeterminants are 1, we
have ������

α xn+1 xn+2

β xn xn+1

γ xn−1 xn

������ = α− β

���� xn+1 xn+2

xn−1 xn

����+ γ .

We don’t know much about that other 2� 2 determinant, so let’s just get rid of
it: take β = 0. ������

α xn+1 xn+2

0 xn xn+1

γ xn−1 xn

������ = α+ γ .

What about α and γ? We want to set them so that. . . what? What do we want
this 3 � 3 determinant to be? Well, it could be anything, but we know that all
kinds of special things happen when a determinant is 0, so let’s make it 0. That
is, we’ll take α = −γ; say, α = 1 and γ = −1.

So now we’re looking at the fact that, for a recurrence satisfying (4), we
have ������

1 xn+1 xn+2

0 xn xn+1

−1 xn−1 xn

������ = 0 .

One thing this means is that the three columns are linearly dependent. The first
two, however, are independent (if we assume xn 6= 0); so the third column lies
in the span of the first two:

2
4 xn+2

xn+1

xn

3
5 2 span


2
4 1

0

−1

3
5 ,
2
4 xn+1

xn
xn−1

3
5
 .

Note that the vector on the left and the vector on the right are of the same
type — both consist of three consecutive elements of our sequence. Taking the
elements of that sequence three at a time, we get a sequence of vectors in R3;
what we now know is that each of those vectors lies in the span of this fixed
vector (1, 0,−1)T and the previous vector in the sequence.

An easy induction then shows that

2
4 xn+1

xn
xn−1

3
5 2 span


2
4 1

0

−1

3
5 ,
2
4 x2
x1
x0

3
5
 .
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What is this span? A plane in R3. So it has a normal vector, that is, a vector to
which everything in the plane is orthogonal, including these vectors consist-
ing of elements of the sequence. Let’s compute a normal vector, say, the cross
product of our two basis vectors for the plane:

2
4 1

0

−1

3
5�

2
4 x2
x1
x0

3
5 =

2
4 x1

−x0 − x2
x1

3
5 .

The fact that this is orthogonal to each vector in our sequence is just the state-
ment that 2

4 x1
−x0 − x2
x1

3
5 �
2
4 xn+1

xn
xn−1

3
5 = 0

for all n � 1. Writing that out in detail, we get

x1xn+1 − (x0 + x2)xn + x1xn−1 = 0 ,

and solving for xn+1 yields

xn+1 =

�
x0 + x2
x1

�
xn − xn−1 ,

a recurrence such as the original problem described.
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