Math Club Notes: 2005 October 13

1 Functions with an unusual property

The aforementioned U of Waterloo contest has the following problem:
Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with the property that

$$
\forall x, y \in \mathbb{R}^{+}: f(x+y)=f\left(x^{2}+y^{2}\right)
$$

We had previously noticed that constant functions have this property; today we looked at a sketch of a proof that they are the only such functions.

In other words, we are proving the theorem

$$
\left(\forall x, y \in \mathbb{R}^{+}: f(x+y)=f\left(x^{2}+y^{2}\right)\right) \Longleftrightarrow f \text { is constant }
$$

(Here and in what follows, we take f to have type $\mathbb{R}^{+} \rightarrow \mathbb{R}$; we won't keep mentioning this fact.) It is useful in this problem to have a clean definition of "constant function"; the nicest one I know is

$$
\mathrm{f} \text { is constant } \Longleftrightarrow\left(\forall \mathrm{a}, \mathrm{~b} \in \mathbb{R}^{+}: \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{~b})\right) .
$$

So what we're proving is that (for functions of the type under consideration)

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{+}: f(x+y)=f\left(x^{2}+y^{2}\right) \tag{1}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\forall a, b \in \mathbb{R}^{+}: f(a)=f(b) \tag{2}
\end{equation*}
$$

The \Leftarrow direction is easy. Suppose (2), and let $x, y \in \mathbb{R}^{+}$; we must show that $f(x+y)=f\left(x^{2}+y^{2}\right)$. Just take $a, b:=x+y, x^{2}+y^{2}$ in (2).

The \Rightarrow direction is not so easy. Suppose (1), and let $a, b \in \mathbb{R}^{+}$; we must show that $f(a)=f(b)$. Now, the only thing we know about f is (1). Fortunately, (1) has approximately the same form as what we're trying to prove: we wish to show that the value of f is the same at some two points, and that's what (1) says. So, we dream a bit: wouldn't it be nice if we could find x and y such that $x+y=a$ and $x^{2}+y^{2}=b$? Then we would have a proof, which would look like this:

Suppose (1), and let $a, b \in \mathbb{R}^{+}$. Let

$$
\begin{aligned}
x & =? \\
\text { and } y & =?
\end{aligned}
$$

Then

$$
\begin{aligned}
x+y & =a \\
\text { and } x^{2}+y^{2} & =b
\end{aligned}
$$

so $f(a)=f(x+y)=f\left(x^{2}+y^{2}\right)=f(b)$. Therefore f is constant.
So now we just need to fill in those question marks.

In other words, we have reduced the problem to this one:
Given $\mathrm{a}, \mathrm{b} \in \mathbb{R}^{+}$, find $x, y \in \mathbb{R}^{+}$such that

$$
\begin{aligned}
x+y & =a \\
x^{2}+y^{2} & =b
\end{aligned}
$$

That is, we wish to solve this system for x and y. (It will turn out that we can't always do this, so our plan will have to be revised.)

Deploying our usual techniques: From the first equation we have $y=a-x$; use this to eliminate y from the second equation, obtaining

$$
x^{2}+(a-x)^{2}=b
$$

Expand and rearrange to obtain

$$
2 x^{2}-2 a x+\left(a^{2}-b\right)=0
$$

which is quadratic in x. Apply the quadratic formula to obtain

$$
x=\frac{1}{2} a+\frac{1}{2} \sqrt{2 b-a^{2}},
$$

and then use $y=a-x$ to obtain

$$
y=\frac{1}{2} a-\frac{1}{2} \sqrt{2 b-a^{2}}
$$

(The quadratic formula actually has \pm, so we could have chosen - in the expression for x; then $w^{\prime} d$ have + in the expression for y. Since x and y enter symmetrically into the system we're solving, it doesn't matter which way we do this.)

It is straightforward to verify that, with these values of x and y, we do indeed have $x+y=a$ and $x^{2}+y^{2}=b$. (For the latter, it is handy to apply the identity

$$
(u+v)^{2}+(u-v)^{2}=2 u^{2}+2 v^{2}
$$

with $u, v:=\frac{1}{2} a, \frac{1}{2} \sqrt{2 b-a^{2}}$.)
But there is a problem: we require that x and y be positive real numbers. In order for them to be real, we'll have to be able to take the square root $\sqrt{2 b-a^{2}}$, that is, we require that

$$
2 b-a^{2} \geq 0
$$

If that holds, then x will be positive (since a is positive, and square roots are at least zero); but for y to be positive we will further require that

$$
\frac{1}{2} a>\frac{1}{2} \sqrt{2 b-a^{2}}
$$

Applying a little algebra to simplify these inequalities, then combining them, we find that our values for x and y will both be positive reals if and only if

$$
\begin{equation*}
\frac{1}{2} a^{2} \leq b<a^{2} \tag{3}
\end{equation*}
$$

Alas, this inequality will not be satisfied for all $a, b \in \mathbb{R}^{+}$.

Let's take stock. We were trying to obtain x and y solving a certain system; given such values, we could show that $f(a)=f(b)$. But in order to obtain such values, we required that (3) be satisfied. So what we have shown is this:

If $a, b \in \mathbb{R}^{+}$satisfy the inequality $\frac{1}{2} a^{2} \leq b<a^{2}$, then $f(a)=f(b)$.
This is not quite what we had hoped to show, but, as it turns out, it's enough.
Here's why this is enough: Consider a to be fixed. If b satisfies (3), then we can obtain $f(a)=f(b)$. That is, all through the interval $\left[\frac{1}{2} a^{2}, a^{2}\right)$, the value of f is the same as it is at a. So f is constant in this interval.

Now increase a little bit. We get a new interval $\left[\frac{1}{2} a^{2}, a^{2}\right.$), on which f is again constant. Since we increased a only a little bit, this new interval will overlap the old interval; so f is constant on their union. By fiddling with a in this manner, we can get a whack of overlapping intervals covering the whole of \mathbb{R}^{+}, and conclude that f is constant on \mathbb{R}^{+}.

To do this formally, we want to construct a (doubly-infinite) sequence of positive reals

$$
\ldots, a_{-3}, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, a_{3}, \ldots
$$

such that the associated intervals

$$
\ldots,\left[\frac{1}{2} a_{-2}^{2}, a_{-2}^{2}\right),\left[\frac{1}{2} a_{-1}^{2}, a_{-1}^{2}\right),\left[\frac{1}{2} a_{0}^{2}, a_{0}^{2}\right),\left[\frac{1}{2} a_{1}^{2}, a_{1}^{2}\right),\left[\frac{1}{2} a_{2}^{2}, a_{2}^{2}\right), \ldots
$$

cover all of \mathbb{R}^{+}, and overlap "enough" - say, each overlaps with the previous interval and the succeeding one.

Getting them to overlap is not so hard. To get the left endpoint of the interval for a_{n+1} to lie inside the interval for a_{n}, we want

$$
\frac{1}{2} a_{n}^{2} \leq \frac{1}{2} a_{n+1}^{2}<a_{n}^{2}
$$

which (everything being positive) readily simplifies to

$$
a_{n} \leq a_{n+1}<\sqrt{2} a_{n}
$$

So it would work if a_{n+1} was, say, the geometric mean of a_{n} and $\sqrt{2} a_{n}$:

$$
a_{n+1}=\sqrt[4]{2} a_{n}
$$

So here's one way to define our sequence:

$$
a_{n}=2^{n / 4}
$$

Then each associated interval $\left[\frac{1}{2} a_{n}^{2}, a_{n}^{2}\right)$ overlaps with the interval for $n-1$ and with the interval for $n+1$, and together these intervals cover all of \mathbb{R}^{+}: as $n \rightarrow \infty$, the right endpoints grow without bound, and as $n \rightarrow-\infty$, the left endpoints converge to 0 . (Writing out the details left as an exercise.)

2 Solutions to 2005 IMO problems

A fellow over at U of Connecticut posted some solutions to the 2005 IMO problems: http://www.math.uconn.edu/~rafi/Thought/Thought.html.

