
Math Club Notes: 2005 October 13

1 Functions with an unusual property

The aforementioned U of Waterloo contest has the following problem:

Find all functions f : R+ → R with the property that

8x, y 2 R+ : f(x+ y) = f(x2 + y2) .

We had previously noticed that constant functions have this property; today
we looked at a sketch of a proof that they are the only such functions.

In other words, we are proving the theorem

(8x, y 2 R+ : f(x+ y) = f(x2 + y2)) ⇐⇒ f is constant .

(Here and in what follows, we take f to have type R+ → R; we won’t keep
mentioning this fact.) It is useful in this problem to have a clean definition of
“constant function”; the nicest one I know is

f is constant ⇐⇒ (8a, b 2 R+ : f(a) = f(b)) .

So what we’re proving is that (for functions of the type under consideration)

8x, y 2 R+ : f(x+ y) = f(x2 + y2) (1)

is equivalent to
8a, b 2 R+ : f(a) = f(b) (2)

The ⇐ direction is easy. Suppose (2), and let x, y 2 R
+; we must show

that f(x+ y) = f(x2 + y2). Just take a, b := x+ y, x2 + y2 in (2).
The ⇒ direction is not so easy. Suppose (1), and let a, b 2 R

+; we must
show that f(a) = f(b). Now, the only thing we know about f is (1). Fortunately,
(1) has approximately the same form as what we’re trying to prove: we wish
to show that the value of f is the same at some two points, and that’s what
(1) says. So, we dream a bit: wouldn’t it be nice if we could find x and y such
that x + y = a and x2 + y2 = b? Then we would have a proof, which would
look like this:

Suppose (1), and let a, b 2 R+. Let

x = ?

and y = ?

Then

x+ y = a

and x2 + y2 = b ,

so f(a) = f(x+ y) = f(x2 + y2) = f(b). Therefore f is constant.

So now we just need to fill in those question marks.
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In other words, we have reduced the problem to this one:

Given a, b 2 R+, find x, y 2 R+ such that

x+ y = a

x2 + y2 = b

That is, we wish to solve this system for x and y. (It will turn out that we can’t
always do this, so our plan will have to be revised.)

Deploying our usual techniques: From the first equation we have y = a−x;
use this to eliminate y from the second equation, obtaining

x2 + (a− x)2 = b .

Expand and rearrange to obtain

2x2 − 2ax+ (a2 − b) = 0 ,

which is quadratic in x. Apply the quadratic formula to obtain

x = 1
2
a+ 1

2

p
2b− a2 ,

and then use y = a− x to obtain

y = 1
2
a− 1

2

p
2b− a2 .

(The quadratic formula actually has �, so we could have chosen − in the ex-
pression for x; then we’d have + in the expression for y. Since x and y enter
symmetrically into the system we’re solving, it doesn’t matter which way we
do this.)

It is straightforward to verify that, with these values of x and y, we do
indeed have x+ y = a and x2 + y2 = b. (For the latter, it is handy to apply the
identity

(u+ v)2 + (u− v)2 = 2u2 + 2v2

with u, v := 1
2
a, 1

2

p
2b− a2.)

But there is a problem: we require that x and y be positive real numbers. In
order for them to be real, we’ll have to be able to take the square root

p
2b− a2,

that is, we require that
2b− a2 � 0 .

If that holds, then x will be positive (since a is positive, and square roots are at
least zero); but for y to be positive we will further require that

1
2
a > 1

2

p
2b− a2 .

Applying a little algebra to simplify these inequalities, then combining them,
we find that our values for x and y will both be positive reals if and only if

1
2
a2 � b < a2 . (3)

Alas, this inequality will not be satisfied for all a, b 2 R+.
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Let’s take stock. We were trying to obtain x and y solving a certain system;
given such values, we could show that f(a) = f(b). But in order to obtain such
values, we required that (3) be satisfied. So what we have shown is this:

If a, b 2 R+ satisfy the inequality 1
2
a2 � b < a2, then f(a) = f(b).

This is not quite what we had hoped to show, but, as it turns out, it’s enough.
Here’s why this is enough: Consider a to be fixed. If b satisfies (3), then we

can obtain f(a) = f(b). That is, all through the interval [1
2
a2, a2), the value of f

is the same as it is at a. So f is constant in this interval.
Now increase a a little bit. We get a new interval [1

2
a2, a2), on which f is

again constant. Since we increased a only a little bit, this new interval will
overlap the old interval; so f is constant on their union. By fiddling with a in
this manner, we can get a whack of overlapping intervals covering the whole
of R+, and conclude that f is constant on R+.

To do this formally, we want to construct a (doubly-infinite) sequence of
positive reals

. . . , a−3, a−2, a−1, a0, a1, a2, a3, . . .

such that the associated intervals

. . . , [1
2
a2
−2, a

2
−2), [

1
2
a2
−1, a

2
−1), [

1
2
a2
0, a

2
0), [

1
2
a2
1, a

2
1), [

1
2
a2
2, a

2
2), . . .

cover all of R+, and overlap “enough” — say, each overlaps with the previous
interval and the succeeding one.

Getting them to overlap is not so hard. To get the left endpoint of the inter-
val for an+1 to lie inside the interval for an, we want

1
2
a2
n � 1

2
a2
n+1 < a2

n ,

which (everything being positive) readily simplifies to

an � an+1 <
p
2an .

So it would work if an+1 was, say, the geometric mean of an and
p
2an:

an+1 =
4
p
2an .

So here’s one way to define our sequence:

an = 2n/4 .

Then each associated interval [1
2
a2
n, a

2
n) overlaps with the interval for n − 1

and with the interval for n + 1, and together these intervals cover all of R+:
as n → ∞, the right endpoints grow without bound, and as n → −∞, the left
endpoints converge to 0. (Writing out the details left as an exercise.)
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2 Solutions to 2005 IMO problems

A fellow over at U of Connecticut posted some solutions to the 2005 IMO prob-
lems: http://www.math.uconn.edu/∼ra�/Thought/Thought.html.
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