Math Club Outstanding Problems: 2005 September 11

Actually, not just outstanding problems; also one or two new ones.

1. A problem from Ray: show that if $a \mid b-1$ and $a \mid c-1$ then $a \mid b c-1$. (In fact any two of those statements implies the third.)
2. Express

$$
\sum_{k}\binom{n}{3 k}
$$

in closed form as a function of n. (There's a hint in the notes for August 8.)
3. (U of Waterloo contest) Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with the property that

$$
\forall x, y \in \mathbb{R}^{+}: f(x+y)=f\left(x^{2}+y^{2}\right)
$$

(We noticed that constant functions have this property; I claimed that they are the only such functions.)
4. A problem I mentioned to Eileen once upon a time: Consider $M_{2}(\mathbb{Z})$, the set of 2×2 matrices with integer entries. It's easy to see that this set forms a ring under the usual matrix operations. What are the units of that ring?
5. (2005 IMO) Suppose x, y, and z are positive reals such that $x y z \geq 1$. Show that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

6. (2005 IMO) Given a convex quadrilateral $A B C D$ such that $B C=D A$ and $B C$ is not parallel to $D A$. AC meets $B D$ at P. E and F are variable points on $B C$ and $D A$ respectively such that $B E=D F$. $E F$ meets $B D$ at Q, and meet $A C$ at R. Prove that the circumcircle of $\triangle P Q R$ passes through a fixed point other than P.
7. (2005 IMO) A competition was held in which each contestant attempts to solve 6 problems. No contestant solved all 6. Every pair of problems was solved by more than $\frac{2}{5}$ of the contestants. Show that there are at least two contestants who solved exactly 5 of the problems. (A partial solution showing there is at least one such contestant - appears in the notes for August 22.)
8. A new problem, in two parts.
(a) Suppose \sim is an equivalence relation on a set S. Let G be the set of invertible functions $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ with the property that

$$
\forall x \in S: x \sim f(x) .
$$

Show that G forms a group under function composition.
(b) Suppose G is a group (under function composition) of functions on a set S. Define the relation \sim on S by

$$
\forall x, y \in S: x \sim y \Longleftrightarrow(\exists f \in G: x=f(y))
$$

Show that \sim is an equivalence relation.
9. A new, open-ended problem: Can anything interesting be said about the solutions of the congruence

$$
\mathrm{k}^{2} \equiv \mathrm{k} \quad(\bmod n) ?
$$

For reference, the first few solutions are shown below.

$$
\text { Distinct solutions of } k^{2} \equiv k(\bmod n)
$$

