Math Club Notes: 2005 August 22

We looked at a couple problems from the 2005 International Mathematical
Olympiad today. (The IMO is a competition for high school students.)

1 Hexagon in triangle

The problem (paraphrased):

AABC is equilateral. Points Ay, A, lie on BC, points By, B, lie
on CA, and points C;, C; lie on AB, forming a convex equilateral
hexagon A1A;B1B,CiC,. Prove that A1B,, B1C;, and C1A, are
concurrent.

Note that an equilateral hexagon (i.e., one whose sides are all equal) need not
be equiangular. Note also that the convexity of the hexagon tells us about the
order of its vertices around the triangle.

Here’s a picture:

A B C
We are given that the triangle is equilateral, that is,
AB=BC=CA,
and that the hexagon is equilateral, that is,
A1A; =A;B; =B1By =B2Ci =C1C =ChA; .

We are to show that the dashed lines are concurrent, as in the figure. (From con-
vexity and the givens, we also have some betweenness relations, which we’ll
just encode in the figure. A complete solution would explain, for example, how
we know that B, A, Az, C occur in that order on their line.)

We solved this problem by a fairly complicated argument; we suspect that
it can be simplified. (The argument I'll give here is actually not quite what we
came up with in the meeting, but it’s quite similar.)
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1.1 Corner triangles are congruent

One of our early conjectures about the figure was that the corner triangles
(AAB,C; and its analogues) are congruent. Proving this required a clever
trick: removing the hexagon.

B

A’ R C’

A B, B, C
In these figures, the removal of the hexagon carries A, B, Cto A’, B/, C’ respec-
tively. It collapses A; and A, into the single point Q; By and B, into R; and
C; and C; into P. Intuitively, we just push the corner triangles together. (We’ll
make that more rigorous in a minute.)

Assuming this hexagon-removing maneuver works the way we intuitively
expect, we reason that

ZA'PR
= {sum of interior angles in AA'PR}
180° — /PRA' — /RA'P
=  {AA’B'C'isequilateral}
180° — ZPRA' — 60°
= {APQR s equilateral}
180° — ZPRA’ — ZQRP
= {ZC'RQ, ZQRP, ZPRA' together form straight angle ZA'RC'}
ZC'RQ
Similarly, ZPRA’ = ZRQC’, and since PR = RQ (as sides of the equilateral
hexagon), by ASA we have AA’PR = AC'RQ (= AB'QP, similarly).

To make the hexagon-removing maneuver more formal, we need to con-
struct the right-hand figure somehow, then prove that it has all the properties
we want. Our intuitive conception of the figure is that it results from pushing
the corner triangles together; to move a triangle from one place to another, we
typically construct a new triangle in such a way that it is congruent to the old
triangle. (For example, we have a construction by SSS, that is, a method to con-

struct a triangle with three given sides, provided that those sides satisfy the
triangle inequality.)
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Perhaps the most natural way to express “pushing the corner triangles to-
gether” as a construction is this: We know that C;A; = A,;B; = B,C; (as sides
of the equilateral hexagon); construct an equilateral triangle APQR with sides
of that same length. Then construct AA’PR on PR so that AA’PR = AAB,Cy,
and similarly for the other two corners.

Now, what properties do we need the new figure to have?

We want to carry conclusions deduced in the right-hand figure back to the
left-hand figure; so we’ll need the new corner triangles (AA'PR, etc.) to be
congruent to the old corner triangles (AAC; B, etc.). This is so by construction.

We used the fact that AA'B’'C’ is equilateral; this follows from its being
equiangular, which follows from the fact that its angles are the images of the
original angles of AABC, which are all equal to each other. So for this it’s
enough that the new and old corner triangles are congruent (so the 60° angles
are preserved).

We used the fact that APQR is equilateral; this follows from the fact that its
sides are the images of some sides of the hexagon, and the hexagon is equilat-
eral. So again, it is enough that the new and old corner triangles are congruent.

Slightly more subtly, we used the fact that P, Q, and R lie on A'B’, B'C/,
and C'A’, respectively. This is, in fact, crucial — it’s the very assumption that
it is possible to assemble the corner triangles into the new figure. And it turns
out to be tricky to prove; I don’t see how to show that our construction makes
A', P,and B’ collinear.

A typical technique in this kind of situation: invert the construction. That
is, construct the figure so that the problematic property is true by construction,
and then prove the other properties instead.

So, a new construction for the right-hand figure: since AB = BC = CA (as
sides of the equilateral triangle) and C;C, = AjA, = BB, (as sides of the
equilateral hexagon), by subtracting the latter from the former we deduce that

AC; +CB=BA; +A,C=CB; +BA.

Construct an equilateral triangle AA’B’C’ with sides of that same length. Then
lay off A’'P = ACy, whence PB’ = C,B. This way, AA'B’C’ is equilateral by
construction, P lies on A’B’ by construction, and A’P and PB’ have the right
lengths by construction (and similarly for the other two sides).

We then need to show that the new corner triangles are congruent to the old
corner triangles. We have A’P = AC; by construction, and A'R = AB; by con-
struction, and ZA' = 60° = ZA since AA'B'C’ is equilateral by construction
and AABC is equilateral by hypothesis. Thus, by SAS, AA'RP = AAB,C;, as
desired. (And similarly for the other two corners.)

Finally, that APQR is equilateral follows, as before, from the congruence of
the new and old corner triangles.
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That completes the construction of the new figure, which justifies our proof
that in that figure the corner triangles are congruent to each other, which im-
plies they are congruent in the original figure, as desired.
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1.2 Concurrence

We noticed that we can show that the hexagon’s “main diagonals” concur by
showing that they are medians or bisectors or altitudes of some triangle. (We
take as known the theorems that medians, etc., concur.) Which triangle? Me-
dians, bisectors, or altitudes, each line will have to pass through one vertex of
the triangle; so take one endpoint from each line, making, say, AA1B;C;.

A B, B, C

We will only show that AB; is a bisector of AA1B;Cy; the proofs for the other
two lines are similar. Finding the following partial argument is fairly routine:

A1B; is a bisector of AA1B;C;
= {definition of “bisector”}
ZB1A1B; = ZC1A1B;
& {corresponding angles}
AB1A1B; = AC1A1B;
= {SSS}
B1A; =C7A; and A1B; = A1B; and B,B7 =B, ;4

(The relevant heuristic: to show that two angles are congruent, show that they
are corresponding angles in some two congruent triangles.)

The second conjunct, A1B, = A1B,, is trivial (congruence is reflexive). The
third, BBy = B,C;, is given (these are two sides of our equilateral hexagon).
So all we need to show is the first: ByA; = C;Aq. We find the following partial
argument (by the same heuristic as before, for segments instead of angles):

B1A1 =CiA,
& {corresponding sides}
AATALB = ACICLA;
= {SAS}
A1A; = C1Cy and ZA1AB7 = ZC1C2A7 and A,By = Cr A,
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The first and third conjuncts are given (sides of the equilateral hexagon), so we
need only show the second: ZA;A;B; = ZC1C,A . And that's easy: these are
supplements of ZCA,;B; and ZBC,A;, which are equal by the congruence of
the corner triangles.

2 Contest combinatorics

The second IMO problem we looked at (paraphrased again):

A competition was held in which each contestant attempts to solve
6 problems. No contestant solved all 6. Every pair of problems was
solved by more than 2 of the contestants. Show that there are at
least two contestants who solved exactly 5 of the problems.

We didn’t solve this; we were able to prove only that there is at least one con-
testant who solved exactly 5 problems. The methods we used for this weaker
result are still of some interest.

First, some notation. Sums will be represented as

(Zx: f(x))

The outer parentheses show the scope of the dummy variable x, which will
always have some implied range of admissible values; we sum over all such
values.

Note in particular that (Xx: 1) denotes the number of admissible values
of x. We will also use the notation

0 if Pis false
[P] = o
1 if Pistrue

which has the convenient property that (Zx: [P(x)]) denotes the number of val-
ues of x such that P(x) is true.

In analogy to the notation for sums, we will write (Vx: P(x)) and (3x: P(x))
for universal and existential quantification. We will also use

(Min x: f(x))

to denote the minimum value of f(x) as x ranges over its values. We will only
need two intuitively obvious properties of minima:

(Minx: f(x)) <y = (Bx: f(x) <y) (1)

and
(Min x: f(x)) < (Avg x: f(x)) (2)
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where averages are defined by
(Avg x: f(x)) = (Zx: f(x))/(Zx: 1)

(That is, the average is the sum, divided by the number of values.)
Now to the problem.
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As stated, the problem asks us to prove
Pand Q = R,
where (for the weaker result that we were able to show)

P = “no contestant solved all 6 problems”
Q = “every pair of problems was solved by > £ of the contestants”

R = “there is at least one contestant who solved exactly 5 problems”

The obvious way to do this is to suppose P and Q, then deduce R. We will
instead prove the theorem in the equivalent form

Pand -R= —Q,

that is, we will suppose P and —R and deduce —Q.
Since there are only 6 problems altogether, P and —R are together equivalent

to the statement that no contestant solved more than 4 problems. Thus no

contestant solved more than (;‘) = 6 pairs of problems.

Now, let ¢ have type “contestant”, so that sums, quantifications, etc. over ¢
range over all the contestants. Let N denote the number of contestants; that is,

N=(Zc: 1) 4)

Let t have type “pair of problems”, so that sums, etc., over t range over all
distinct pairs of problems, of which there are (§) = 15. We have supposed that

“no contestant solved more than 6 pairs of problems”
= {formalization}
—(dc: (Zt: [c solved t]) > 6)
= {logic}
(Ve: (Xt: [c solved t]) < 6) (5)

(Note that “c solved t” means that c solved both of the problems of which the
pair t consists.) What we wish to show, namely —Q), is

— “every pair of problems was solved by > 2 of the contestants”
= {formalization}
—(Vt: (Zc: [c solved t]) > %N)
= {logic}
(Ft: (Zc: [c solved t]) < %N)
= (W}
(Min t: (Zc: [c solved t])) < %N (6)
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To prove (6) by using (5), we must relate the sum over c in (6) to the sum over t
in (5); we achieve that as follows:
(Min t: (Zc: [c solved t]))
< )
(Avgt: (Xc: [c solved t]))
= {definition of average}
(Zt: (Xc: [csolved t]))/(XZt: 1)
= {there are 15 pairs of problems}
(Zt: (Xc: [c solved t]))/15
= {exchange sums}
(Zc: (Xt: [c solved t]))/15

Thus we have
(Min t: (Zc: [c solved t])) < (Zc: (Zt: [c solved t]))/15, (7)
and applying (5) then yields
(Min t: (Zc: [c solved t])) < (Zc: 6)/15 = %N ,

as desired.

Attempting to apply the same method to the stronger result, that there are
at least two contestants who solved exactly 5 problems, we would suppose
(for —R) that at most one contestant solved exactly 5 problems. Then, instead
of (5), the best we can say is that

(Xc: (Zt: [csolved t])) < 6(N—1)+10,

since (in the situation which makes this sum as large as possible) N — 1 contes-
tants solved 4 problems, hence 6 pairs of problems, and one contestant solved
5 problems, hence (g) = 10 pairs of problems. Applying this inequality to (7)
yields

(Min t: (Zc: [c solved t])) < %N + % ,

which is weaker than the desired result. We can tighten this up a little bit by
multiplying by 5:

5(Min t: (Zc: [csolved t])) < 2N+ 5.
Then, since the left-hand side is an integer,

5(Min t: (Xc: [csolved t])) < 2N + 1.
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This observation lets us shave 7= off our upper bound for the minimum; but
it’s still not good enough.

The [P] notation is used in Concrete Mathematics, by Graham, Knuth, and
Patashnik; they call it “Iverson’s brackets”, and make much use of it in evalu-
ating sums.

The proof format used above is, apparently, due to W. H. ]. Feijen; I read
about it in Dijkstra. The notation for sums and whatnot resembles that of Di-
jkstra. Also Dijkstra’s is the observation that min < avg < max, or rather, the
observation that this is a better formulation of the pigeonhole principle; see his
note EWD1094. Dijkstra also has a good discussion about choosing which of
several equivalent statements one wishes to prove; see his note EWD729.

3 Other problems

The other four 2005 IMO problems (all paraphrased):

1. We are given an infinite sequence of integers ai, az,.... The sequence
contains infinitely many positive values and infinitely many negative val-
ues. For every positive integer n, the values a1, ay, ..., a, leave n differ-

ent remainders on division by n. Show that every integer occurs exactly
once in the sequence.

2. Given positive real numbers x, y, z such that xyz > 1, show that

5 —x2 Yo —y? 25 _ 52

+ + >
X H+yr+z2 Y +z22+xr P Axr 4y T

3. Find all positive integers relatively prime to 2™ +3™+6™—1 for all positive
integers n. [This is a badly worded problem. I'm guessing that we are to
find {k: k € Z" and (Vn € Z*: ged(k,2™ +3™ + 6" —1) =1)}]

4. Given a convex quadrilateral ABCD such that BC = DA and BC is not
parallel to DA. AC meets BD at P. E and F are variable points on BC
and DA respectively such that BE = DF. EF meets BD at Q, and meet AC
at R. Prove that the circumcircle of APQR passes through a fixed point
other than P. [Another badly worded problem.]
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