
Math Club Notes: 2005 August 8

1 Rectangles

In my last email I mentioned the following problem: what integer-sided rect-
angles have equal area and perimeter?

Let the side lengths be x and y. We seek integer solutions to

xy = 2(x+ y) and x � 0 and y � 0 . (1)

(One usually requires lengths to be nonnegative.) Here’s the slick solution:

xy = 2(x+ y) ⇐⇒ xy− 2x− 2y = 0⇐⇒ xy− 2x− 2y+ 4 = 4⇐⇒ (x− 2)(y− 2) = 4

Thus (1) is equivalent to

(x− 2)(y− 2) = 4 and x− 2 � −2 and y− 2 � −2 .

The integer factorizations of 4 with both factors at least −2 are (−2,−2), (2, 2),
and (1, 4); these give rise to solutions for (x, y) of (0, 0), (4, 4), and (3, 6).

The trick in this solution is, of course, to notice that xy − 2x − 2y is almost
factorable. In slightly more general terms, we should know that

xy+ ax+ by = (x+ b)(y+ a) − ab ,

and be ready to apply this when we see xy, x, and y terms. Call it “completing
the hyperbola”. (Why?)
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2 Convergence of an integral

Back on July 4, we evaluated the integral∫π
0

ln sin xdx = −π ln 2

by some clever tricks. The derivation assumed that this improper integral con-
verges; today we proved that it does.

Since the integrand is undefined at both endpoints, we must split up the
integral and show the convergence at each endpoint separately. (That’s how
improper integrals of this type are defined.) Well, we can get away with doing
just one endpoint, because the integrand is symmetric across x = π/2. And we
don’t need to split the integral into exactly two pieces. For any δ 2 (0, π), we
have ∫π

0

=

∫δ
0

+

∫π−δ
δ

+

∫π
π−δ

.

On the right-hand side, the middle integral is proper, and by symmetry the
first and last are equal. So it suffices to show that

9δ 2 (0, π) :

∫δ
0

ln sin xdx converges. (2)

We can choose δ in whatever way we find convenient.
Now, sometimes we show the convergence of an improper integral “di-

rectly”; for example, by definition∫1
0

ln xdx converges ⇐⇒ lim
a→0+

∫1
a

ln xdx exists ,

and this latter limit-of-integral we can just evaluate:

lim
a→0+

∫1
a

ln xdx = lim
a→0+

�
x ln x− x

�1
a

(by parts; see July 4)

= lim
a→0+(1 ln 1− 1− a lna+ a)

= −1− lim
a→0+ a lna

= −1− lim
a→0+

lna
1/a

= −1− lim
a→0+

1/a

−1/a2
(L’Hôpital’s Rule)

= −1− lim
a→0+(−a)

= −1
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Alas, this plan won’t work in the case of
∫δ
0

ln sin xdx, because we don’t
know the antiderivative of ln sin x. (That’s why we needed clever tricks to
evaluate the definite integral.)

As usual in such problems, we now fall back on the Comparison Theorem.
Since

0 < x < π =⇒ 0 < sin x � 1

=⇒ ln sin x � ln 1 (ln is increasing)⇐⇒ ln sin x � 0

we need a function fwith the following properties:

8x 2 (0, δ) : f(x) � ln sin x (3)∫δ
0

f(x)dx converges (4)

Then the hypotheses of the Comparison Theorem are satisfied, and (2) follows.
So now we want to find a function f and a constant δ 2 (0, π) such that

(3) and (4) hold. As usual when applying the Comparison Theorem, we will
want for f something related to our integrand ln sin x (so that (3) will be easy
to establish) but simpler (so that (4) will be easy to establish).

The obvious first guess is f(x) = ln x. We already know that (4) holds for
this function (as shown on page 2), so all we need to show is (3). Since ln is
increasing,

ln x � ln sin x ⇐= x � sin x ,

but alas, the latter is false for all positive x.
For some reason, both Eileen and I had the same second guess: f(x) = ln x2.

(There are alternatives; e.g. f(x) = ln(1
2
x) also works.) Proving (4) is still easy

for ln x2, since ∫δ
0

ln x2 dx =
∫δ
0

2 ln xdx = 2
∫δ
0

ln xdx ,

for any δ � 0, and we know the remaining integral converges. As for (3), we
want to show

9δ 2 (0, π) : 8x 2 (0, δ) : ln x2 � ln sin x ,

which (since, again, ln is increasing) follows from

9δ 2 (0, π) : 8x 2 (0, δ) : x2 � sin x . (5)

That there is such a δ seems obvious in a picture:
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δ

Of course, to draw this picture we are exploiting our long familiarity with these
functions. How can we prove (5) more formally?

Here’s one way: formalize the relevant properties of the picture. First we
calculate some second derivatives to show that sin x is concave down in (0, π)

and x2 is concave up (everywhere, but in particular) in (0, π). Thus sin x lies
above its secant lines in that interval, and x2 lies below its secant lines in that
interval. Since they intersect at x = 0 and x = δ, as in our picture, they share
the secant joining those two points of intersection, so between 0 and δ (assum-
ing δ 2 (0, π)) we have x2 � secant � sin x, which yields (5).

Thus we need only show that these curves do actually intersect; that is,
we want to find δ 2 (0, π) such that δ2 = sin δ. Unfortunately, we have no
techniques for solving this kind of equation; fortunately, we don’t need to solve
it. All we need is that such a δ exists, that is,

9δ 2 (0, π) : δ2 = sin δ . (6)

Cue the Intermediate Value Theorem: Let g(x) = x2 − sin x. Then, on the one
hand,

g(π) = π2 − 0 > 0

and on the other,

g(π
6
) =

π2

36
−
1

2
=
π2 − 18

36
<
42 − 18

36
< 0

So, knowing that 0 < π < 4, we can show g(π
6
) < 0 < g(π), whence, by the

continuity of g and IVT,

9δ 2 (π
6
, π) : g(δ) = 0 ,

and (6) follows.
And that solves the problem. Huzzah!
(The solution can be considerably simplified. It makes a big difference to

approach the proof of (5) from a totally different direction: First we calculate
that

lim
x→0+

x2

sin x
=
�

lim
x→0+ x

��
lim
x→0+

x

sin x

�
= 0 � 1 = 0 .
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By definition this means

8ε > 0 : 9δ > 0 : 8x 2 (0, δ) :

���� x
2

sin x

���� < ε .

Taking ε = 1 in particular, we have

9δ > 0 : 8x 2 (0, δ) :

���� x
2

sin x

���� < 1 ,

which can be massaged into (5). This approach is very natural if we recog-
nize (5) as having approximately the form of the limit definition. Note how
thinking pictorially led us into a more complicated solution.)

3 A hint on an outstanding problem

A hint for the outstanding problem (see June 27) of expressing∑
k

�
n

3k

�

in closed form as a function on n: Supposing that we found some pattern in
the values of this sum, how would we prove that the pattern continues to hold?
Perhaps by induction on n. That would involve (in the inductive step) relating
entries from the nth row of Pascal’s triangle to entries from the (n − 1)th row.
Usually we use �

n

k

�
=

�
n− 1

k− 1

�
+

�
n− 1

k

�

for this purpose. Applying this identity to our sum, we obtain∑
k

�
n

3k

�
=

∑
k

�
n− 1

3k− 1

�
+
∑
k

�
n− 1

3k

�
.

The second sum on the right-hand side is what the inductive hypothesis would
pertain to; the first sum, however, is new. Repeating this operation will bring
in

∑
k

�
n

3k−2

�
as well; repeating it a third time introduces nothing new.

Perhaps, then, we should be thinking not just about the sum with the mul-
tiples of 3, but about three sums all at once — one for each possible remainder
on division by 3. To consider multiple values as one object, throw them into a
vector: let

un =

2
664

∑
k

�
n
3k

�∑
k

�
n

3k+1

�∑
k

�
n

3k+2

�

3
775 .

How is un+1 related to un?
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4 A new problem

Yet another problem from the aforementioned U of Waterloo contest: find all
functions f : R+ → R with the property that

8x, y 2 R+ : f(x+ y) = f(x2 + y2) .

We observed today that all constant functions have this property; a natural
conjecture (upon failing to think of any others) is that these are the only such
functions. (R+ is the set of positive real numbers.)
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