
Math Club Notes: 2005 July 18

1 Hyperbola tangents

1.1 The theorem

We will prove a theorem which (according to MathWorld) is due to Apollonius:
the segment of a hyperbola’s tangent bounded by its asymptotes is bisected by
the point of tangency. For example, in the following figure we have PT = TQ.

P

Q

T

Presumably Apollonius proved this with synthetic methods. I have no idea
how he did that; we’ll use analytic geometry instead.
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1.2 First solution

Let the hyperbola be H. (That is, H is the set of points on the hyperbola.) With
a suitable coordinate system, we have�

x

y

�
2 H ⇐⇒ x2

a2
−

y2

b2
= 1 . (1)

(A “suitable coordinate system” is one with the origin at the centre of the hy-
perbola and the x-axis oriented to pass through the foci.) It will be convenient
later to have observed that

x2

a2
−

y2

b2
=
� x
a
−

y

b

�� x
a
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�
.

Thus �
x

y

�
2 H ⇐⇒ x

a
−

y

b
=
� x
a
+

y

b

�−1

(2)

and �
x

y

�
2 H =⇒ x

a
−

y

b
6= 0 (3)

Let A1 be the asymptote with slope b/a; since it passes through the origin,�
x

y

�
2 A1 ⇐⇒ bx− ay = 0 (4)

Implicitly differentiating (1), we obtain

2x

a2
−

2yy 0

b2
= 0 , whence y 0 =

b2x

a2y
,

that is,

L is tangent to H at (x, y) =⇒ L has slope
b2x

a2y
. (5)

So, let T = (x0, y0) be a point on H, and let L be the tangent to H at T . This
line passes through T , and its slope is given by (5); from these we obtain its
point-slope equation:�

x

y

�
2 L ⇐⇒ y− y0 =

b2x0

a2y0
(x− x0)

A little algebra, to simplify:

y− y0 =
b2x0

a2y0
(x− x0) ⇐⇒ y0

b2
(y− y0) =

x0

a2
(x− x0)

⇐⇒ y0y
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−

y2
0
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=

x0x

a2
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x20
a2

⇐⇒ x0x

a2
−

y0y

b2
=

x20
a2

−
y2
0

b2⇐⇒ x0x

a2
−

y0y

b2
= 1 (by (1); (x0, y0) 2 H)
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Thus �
x

y

�
2 L ⇐⇒ x0x

a2
−

y0y

b2
= 1 . (6)

(Incidentally, note the similarity of structure between (6) and (1).)
Now let P be the intersection of the tangent L and the asymptote A1.

−→
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�
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y
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�
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�
2 L
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(by (4) and (6))
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The determinant of this matrix is x0/a−y0/b, which, by (3), is not zero; thus the
matrix is invertible, and the system has a unique solution. (That is, L and A1

are not parallel, as we’d expect.) That solution is
�
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�
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�
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A similar computation shows that Q, the intersection of the tangent L with the
asymptote A2, is given by�
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� �
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�
,

and so the midpoint of PQ is

1

2
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b/a 1
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�
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as claimed.
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1.3 Second solution

Let M : R2 → R
2 be the linear transformation defined by

M

�
x

y

�
=

�
1/a −1/b

1/a 1/b

� �
x

y

�
. (7)

Note that, since

det
�

1/a −1/b

1/a 1/b

�
=

2

ab
6= 0 ,

the transformation M is invertible.
Let G be the hyperbola

�
x

y

�
2 G ⇐⇒ xy = 1 (8)

Then:
�

x

y

�
2 H ⇐⇒ x2

a2
−

y2

b2
= 1 (by (1))

⇐⇒ � x
a
−

y

b

�� x
a
+

y

b

�
= 1 (difference of squares)

⇐⇒ �
x/a− y/b

x/a+ y/b

�
2 G (by (8))

⇐⇒ �
1/a −1/b

1/a 1/b

� �
x

y

�
2 G (matrix arithmetic)

⇐⇒ M

�
x

y

�
2 G (by (7))

Thus G is the image of H under M.
We will prove the theorem for G, and deduce that it holds for H as well.

This makes for simpler algebra than in the first solution because (8) is simpler
than (1). We do, however, have to check that everything we care about in this
problem is preserved by the transformation M (and its inverse M−1).

One part is easy: being a midpoint is preserved by M, because (letting O de-
note the origin, as usual)

T is the midpoint of PQ ⇐⇒ −→
OT = 1

2
(
−→
OP +

−−→
OQ) .

The right-hand side is a statement of vector arithmetic, so its truth or falsity is
preserved by a linear transformation such as M.

The other part is whether tangency is preserved by M, that is, whether the
tangent to H at T is mapped to the tangent to G at M(T) (and vice versa). The ar-
gument here would be a little more complicated, but in spirit it goes something
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like this. If T and X are some two distinct points on H, then M(T) and M(X) are
some two distinct points on G. (They are on G because G is the image of H; they
remain distinct because M is invertible.) Since linear transformations preserve
straight lines, it follows that the secant TX is mapped to the secant M(T)M(X).
Since linear transformations are continuous, that is, they preserve limits, the
tangent at T (being the limit of secants TX) is mapped to the tangent at M(T)

(being the limit of secants M(T)M(X)).
Now to prove the theorem for G. Taking differentials in (8), we find that

xdy+ ydx = 0 , whence
dy

dx
= −

y

x
.

So let L be the tangent to G at (x0, y0); then
�

x

y

�
2 L ⇐⇒ y− y0 = −

y0

x0
(x− x0)

⇐⇒ y− y0

y0
=

x0 − x

x0⇐⇒ y

y0
− 1 = 1−

x

x0⇐⇒ x

x0
+

y

y0
= 2

Since the asymptotes of G are the x- and y-axes, the intersections of the tan-
gent L with the asymptotes are its x- and y-intercepts. Setting y = 0 in the
last equation immediately yields x = 2x0, so that one of the intersection points
is (2x0, 0); similarly the other is (0, 2y0). The point of tangency (x0, y0) is in-
deed halfway between these points.

Isn’t that tidy?

1.4 Coordinate systems

Here’s another way to look at the second solution: with a suitable coordinate
system, every hyperbola has the equation xy = 1. Take the asymptotes as the
axes, and set units so that one vertex is at (1, 1).

This way of saying it feels a little strange. Normally when picking a coor-
dinate system, we put the origin where we want, orient the axes how we want,
and leave it at that. If we think of the coordinate system as fixed, this means
translating the figure to a desired position, and rotating and reflecting it into
a desired orientation. These are all rigid motions, so they do not disturb the
geometry; the figure’s coordinates change but (for example) lengths, angles,
areas, collinearity, congruence, similarity, parallelism, and tangency are all un-
affected. In other words, for problems concerning solely geometric properties,
we may, without loss of generality, choose any position and orientation for the
figure.
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In this problem, however, we change coordinate systems by applying the
transformation M, which is not a rigid motion. It distorts the geometry —
lengths and angles change — so conclusions about the geometric properties of
the figure as it looks after this transformation do not necessarily hold for the
figure before this transformation.

But it’s okay for this problem, because M does preserve the properties we
care about here.

There’s a well-known conception of geometry, advanced by Klein, known
as the Erlanger Program, which takes transformations as fundamental. For ex-
ample, rather than taking congruence of segments and congruence of angles as
the fundamental concepts of our geometry, we start with a group of transfor-
mations of the plane, called “rigid motions” — translation, rotation, reflection,
and compositions of these — and then define congruence as that which is pre-
served by these transformations. (That is, figures are said to be congruent iff
they can be transformed into one another by means of a rigid motion.)

If we take a different group of transformations, we end up with a different
geometry. Transformations like M belong to “affine” geometry. The second
approach to the theorem of Apollonius is essentially based on the observation
that it involves only properties that are preserved by affine transformations;
that is, it’s a theorem of affine geometry, not of Euclidean geometry.

1.5 Observation on area

It’s easy to show that, for the hyperbola G, the triangle formed by the asymp-
totes and the tangent has area 2, no matter where the point of tangency is. Now,
affine transformations do not preserve area, but they do have a predictable ef-
fect on it: they scale it by some factor, given by the determinant of the asso-
ciated matrix. Since M has determinant 2/ab, its inverse M−1 has determi-
nant ab/2, so the asymptote-tangent triangle for H has ab/2 times the area of
the triangle for G, that is, area ab. No matter where the point of tangency is.

(Apollonius proved that too, apparently.)
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