
Math Club Notes: 2005 July 11

1 Continued square roots

A problem you’ll find everywhere: evaluater
2+

q
2+

p
2+ � � � .

This an infinitely long expression, so as usual we define it in terms of limits.
Define a sequence {an}

∞
n=0 by the recurrence

a0 = 0

an+1 =
p
2+ an

Thus
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and we can define our infinite expression byr
2+

q
2+

p
2+ � � � = lim

n→∞an ,

if this limit exists.
Suppose for the moment that the limit does exist, say,

lim
n→∞an = L .

Then

L = lim
n→∞an

= lim
n→∞an+1

= lim
n→∞

p
2+ an (by the recurrence)

=
q

lim
n→∞(2+ an) (square root is continuous)

=
q
2+ lim

n→∞an (adding 2 is continuous)

=
p
2+ L
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Square both sides, solve the quadratic; either L = −1 or L = 2. The former
is impossible: every an is at least zero — the first is zero, and the subsequent
elements are square roots — so their limit must also be at least zero. So if the
limit exists, it is 2.

How can we show that the limit exists? Since we have a pretty good guess
about what it is, we could go to first principles, that is, try to prove that

8ε > 0 : 9N : n > N =⇒ |an − 2| < ε .

Try this if you like; I don’t see how to make it work.
Another way to show a sequence converges: show that it is increasing and

bounded above. How to show that it is increasing?

{an} is increasing ⇐⇒ 8n : an � an+1 (definition of increasing)⇐⇒ 8n : an �
p
2+ an (by the recurrence)⇐⇒ 8n : a2n � 2+ an (an � 0)⇐⇒ 8n : (an − 2)(an + 1) � 0 (algebra)⇐⇒ 8n : an − 2 � 0 (an + 1 � 1 > 0)⇐⇒ 8n : an � 2 (algebra)

If only we could show that 8n : an � 2. That would show both that the se-
quence is bounded above (instantly) and that it is increasing (by the above
argument).

8n : an � 2 is a statement about all natural numbers; let’s try induction.
Base case: a0 = 0 � 2. Inductive step: if an � 2 then

an+1 =
p
2+ an �

p
2+ 2 = 2 .

Well, that was easy. (By the way, since our sequence is defined by a recurrence,
that is, by the relationship of each element to the one before it, induction should
be at the back of your mind during the whole problem. Recurrences are tailor-
made for inductive arguments.)

This is an interesting example because the mere fact that the limit exists is
enough to allow a computation that determines its value. A kind of bootstrap-
ping: give an argument to show that there is a limit, then use that fact (and the
properties of limits) to deduce what it is.

(The previously mentioned U of Waterloo contest, http://www.stats.uwaterloo.
ca/∼cgsmall/EK2001.pdf has a generalization of this problem.)
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2 Examples of half-lattices

The little note on “half-lattices” attached last week has no examples of half-
lattices. Here’s two lattice operations on N (that is, the nonnegative integers):

a ↓ b = min{a, b}

a ↓ b = gcd(a, b)

(In order for gcd to be an operation on N, we must define gcd(0, 0); it’s best to
set gcd(0, 0) = 0.)

Here’s a third: let a ↓ b be the number whose binary expansion has a 1 in
those positions where the binary expansions of a and b both have 1s, and 0s
elsewhere. For example,

25= (11001)2
85= (1010101)2
17= (10001)2

and so 25 ↓ 85 = 17. (This operation is called “bitwise and”.)
I leave figuring out the associated meanings of v as an exercise.

3 Solving for unknowns

Remember back on June 13, when we constructed an example of an ordered
ring in which Zwas bounded above? The strategy was to assume we had such
a ring (that is, a ring containing the integers and an upper bound for them,
called ∞), and then to deduce other properties that that ring would have to
have. Eventually we deduced enough about the ring to say what it was.

It occurred to me last week that this is the same procedure we use when
solving an equation. Suppose we want to find a number which is its own
square. We suppose that we have such a number, say, x; that is, we suppose
that

x2 = x .

Then with a little algebra we deduce that

x2 − x = 0

x(x− 1) = 0

and so either x = 0 or x = 1. So: if x is a number with the desired property,
then it is either 0 or 1 (and, in this instance, conversely).

It’s exactly the same thing. Suppose you have an object with certain prop-
erties; use those properties to deduce others; eventually you find out enough
about the object that you’re willing to say you know what it is.
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4 Sum of reciprocals of sums of squares

∞∑
r=1

� r∑
s=1

s2
�−1

=

∞∑
r=1

6

r(r+ 1)(2r+ 1)
(well-known formula)

=

∞∑
r=1

�
6

r
+

6

r+ 1
−

24

2r+ 1

�
(partial fractions)

At this point we might want to split this up into three sums:

∞∑
r=1

6

r
+

∞∑
r=1

6

r+ 1
−

∞∑
r=1

24

2r+ 1
.

But we can’t; these three sums diverge.
So instead we must start speaking of the limit of partial sums. Let

Sn =

n∑
r=1

�
6

r
+

6

r+ 1
−

24

2r+ 1

�
.

(We are interested in determining limn→∞ Sn.) Now we can split the sum up,
since the resulting three sums are finite and issues of convergence do not arise:

Sn =

n∑
r=1

6

r
+

n∑
r=1

6

r+ 1
−

n∑
r=1

24

2r+ 1
.

What now? Well, the first two sums overlap a fair bit. Let’s use that fact:

Sn =

n∑
r=1

6

r
+

n+1∑
r=2

6

r
−

n∑
r=1

24

2r+ 1

= 6+
6

n+ 1
+

n∑
r=2

6

r
+

n∑
r=2

6

r
−

n∑
r=1

24

2r+ 1

= 6+
6

n+ 1
+

n∑
r=2

12

r
−

n∑
r=1

24

2r+ 1

Now, observe that the second sum has consecutive odd numbers in the de-
nominators; where are the even numbers? What would a sum with the even
numbers look like? It would have 2r in the denominator. Well, we can make
that happen:

Sn = 6+
6

n+ 1
+

n∑
r=2

24

2r
−

n∑
r=1

24

2r+ 1

(You could also reach this point by trying to turn the 12 into 24 to match the
other sum.) Now we have even numbers and odd numbers in two sums. Let’s
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write it to express that:

Sn = 6+
6

n+ 1
+

∑
4�k�2n

k even

24

k
−

∑
3�k�2n+1

k odd

24

k

Now the summands are identical, and their ranges interlace nicely to form all
numbers from 3 to 2n+ 1. Well, the summands are actually not quite identical:
the ones with even k are positive and the ones with odd k are negative. But we
know how to write that:

Sn = 6+
6

n+ 1
+

2n+1∑
k=3

24(−1)k

k

At this point we must remember having seen a sum like this before. If we do,
it’s easy to proceed:

Sn = 6+
6

n+ 1
+ 24

2n+1∑
k=3

(−1)k

k

= 6+
6

n+ 1
+ 24

 
1−

1

2
+

2n+1∑
k=1

(−1)k

k

!

= 18+
6

n+ 1
+ 24

2n+1∑
k=1

(−1)k

k

= 18+
6

n+ 1
− 24

2n∑
k=0

(−1)k

k+ 1

We don’t have a closed form for Sn here, but (see our notes for June 13) we
know the limit of the remaining sum as n→ ∞. Final result:

1

1
+

1

1+ 4
+

1

1+ 4+ 9
+ � � � = 18− 24 ln 2 .
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