
Math Club Notes: 2005 June 27

1 Compositions

Yet another tidbit from Cmpt 272:

A composition of a positive integer n is a way to write n as a sum of
positive integers. Order matters; e.g., “1 + 1 + 2” and “1 + 2 + 1”
are considered distinct compositions of 4. A “sum” consisting of
just one term is also considered a composition, so that, for example,
“4” is a composition of 4.

How many compositions of n are there? That is, give a closed-form
expression for the number of compositions of n as a function of n,
and prove it correct.

(This way of posing the question is unusually explicit; for example, the final
sentence, which explains what kind of answer is expected, would often be
omitted. To a mathematician, what that sentence says, er, goes without say-
ing.)

Mehran, following general principles, suggested that we look at the first
few values. “When in doubt, use brute force.” Let Cn denote the number of
compositions of n. We compute:

n Compositions Cn

1 1 1

2 2 2

1+ 1

3 3 4

2+ 1

1+ 2

1+ 1+ 1

4 4 8

3+ 1

1+ 3

2+ 2

2+ 1+ 1

1+ 2+ 1

1+ 1+ 2

1+ 1+ 1+ 1

Hey — powers of 2.
Conjecture:

8n 2 Z+ : Cn = 2n−1 .
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This is a statement about all positive integers; induction should leap to mind
as a standard way to prove such things.

1.1 Proof by induction

We already have the base case (and then some) in the table above; what about
the inductive step? We will suppose our result true for n and then show it
follows for n+ 1. That is, our situation in the inductive step is:

Cn = 2n−1 (supposed)

Cn+1 = 2n (desired)

Trying to make what we’ve supposed look more like what we want to show,
we multiply the inductive hypothesis by 2:

2Cn = 2n (supposed)

Cn+1 = 2n (desired)

If only we could show that Cn+1 = 2Cn. Then we would have a proof, which
would look like this:

We show by induction that Cn = 2n−1 for all positive integers n. In
the base case n = 1, we have C1 = 1 (since there is only composition
of 1, namely “1”), and 21−1 = 1. Now suppose the claim to be true
for some positive integer k, that is, Ck = 2k−1. Then

Ck+1 = 2Ck (by magic)

= 2 � 2k−1 (inductive hypothesis)

= 2k

which is exactly the claim for k + 1. By induction, the claim holds
for all positive integers n.

Considerable progress. By deploying the standard technique of induction,
we’ve reduced our problem from proving the closed form for our sequence
to proving a relationship between consecutive elements of that sequence: it re-
mains only to show that Cn+1 = 2Cn. It’s natural now to try to separate the
Cn+1 compositions of n + 1 into two groups, in such a way that both groups
are obviously as numerous as the compositions of n.

One way to get such a group is pretty easy to think of: take a composition
of 3 (for concreteness), tack on a “+1”, and you’ll have a composition of 4.

3 → 3+ 1

2+ 1 → 2+ 1+ 1

1+ 2 → 1+ 2+ 1

1+ 1+ 1 → 1+ 1+ 1+ 1

Group A: append “+1”

Steven Taschuk � 2005 June 27 � http://www.amotlpaa.org/mathclub/2005-06-27.pdf 2

http://www.amotlpaa.org/mathclub/2005-06-27.pdf


Now we have to figure out a rule for the other group:

3 → 4

2+ 1 → 2+ 2

1+ 2 → 1+ 3

1+ 1+ 1 → 1+ 1+ 2

Group B: what rule?

Ray spotted the pattern here: add 1 to the last term in the composition. Obvi-
ously this turns a composition of 3 into a composition of 4.

Putting it all together:

Lemma 1 Cn+1 = 2Cn for all positive integers n.

Proof Divide the compositions of n + 1 into two sets: set A con-
taining those compositions whose last term is 1, and set B contain-
ing those whose last term is greater than 1. Obviously these sets are
disjoint, so that Cn+1 = |A|+ |B|.

Set A is equipollent with the compositions of n, that is, |A| = Cn.
For each composition of n+ 1 in A is a composition of n with “+1”
tacked on the end. (Obviously this is a bijection.)

Also, |B| = Cn, since each composition of n + 1 in B is a composi-
tion of n with the last term increased by 1. (This too is obviously a
bijection.)

Therefore Cn+1 = |A|+ |B| = 2Cn. �

Then we give the inductive proof from before (replacing “by magic” with “by
the lemma”), and we’re done.

1.2 Luck

You might have noticed that, when figuring out group B, we wrote down

3 → 4

2+ 1 → 2+ 2

1+ 2 → 1+ 3

1+ 1+ 1 → 1+ 1+ 2

By luck, it seems, this turned out to be the right way to pair up the composi-
tions of 3 with the compositions in group B. But how would we know that?

The only thing I can think of is, try to pair them up by “natural” similarity.
We might notice that, of the compositions we wish to pair up, on both sides
we have one of length 1, two of length 2, and one of length 3. It’s reasonable
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to guess that we should pair them up by length. The two of length 2 can be
paired correctly by matching the common first elements. Try to make patterns,
or bring out patterns that are already there, however vague or partial. It’s all
guesswork, but that’s math.

(That last comment might seem a little odd. Let me put it this way: the
product of mathematics — the theorems and proofs — is logical, structured,
more-or-less rigorous argument. The process of doing mathematics, however,
is intuitive, unstructured, sloppy guesswork. We guess that induction is the
way to go, and hope to figure out the inductive step. We guess about how to
make group A, and hope we can figure out a rule for group B.)

1.3 Brute force

We started with listing all the compositions of n (for the first few n) by brute
force. One practical difficulty with this plan: how will you know that you’ve
got them all?

The usual idea for this is, try to list them systematically. In the list on page 1,
I listed the compositions in order of largest element (sort of). Here’s another
way: list them lexicographically. The compositions of 4, for example, must
each start with 1, 2, 3, or 4. So:

1+ � � � 2+ � � � 3+ � � � 4+ � � �

Now, the compositions that start with 1 must then continue with 1, 2, or 3. Not
anything larger, lest the sum be larger than 4. So:

1+ 1+ � � � 2+ � � � 3+ � � � 4+ � � �

1+ 2+ � � �

1+ 3+ � � �

Proceeding in this manner, we can generate a complete list, and be sure it is
complete.

Listing things systematically requires that you come up with a system that
will definitely produce everything you want. That in turn requires thinking
a little bit about the structure of the set of things you want. This can lead to
ideas for proofs; this lexicographic order, for example, suggests grouping the
compositions by their first term, which leads to. . .

1.4 Proof by strong induction

We show by strong induction that Cn = 2n−1 for all positive integers n. The
base case n = 1 is given above.

Now suppose that, for some integer k, the claim is true for all integers i such
that 1 � i < k. Then count the compositions of k as follows. The first term of
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each composition must be one of the numbers 1, 2, . . . , k. There is exactly one
composition whose first term is k, namely “k”. If the first term is 1, then the
remaining terms form one of the Ck−1 compositions of k − 1; if the first term
is 2, then the remaining terms form one of the Ck−2 compositions of k− 2; and
so forth, up to a first term of k− 1 followed by a composition of 1. Therefore

Ck = 1+ Ck−1 + Ck−2 + � � �+ C1

= 1+ 2k−2 + 2k−3 + � � �+ 21−1 (inductive hypothesis)

= 1+
2k−1 − 1

2− 1
(geometric series)

= 2k−1 ,

which is the claim for k.
By induction, the claim holds for all positive integers.

1.5 Combinatorial proof

The number of compositions of n is clearly the number of ways to chop up
a row of n widgets into contiguous blocks, each block containing at least one
widget. For example:

1+ 3+ 2+ 2 �

��
� � �

��
� �

��
� �

Consider the n− 1 interstices between the n widgets:

↓ ↓ ↓ ↓ ↓ ↓ ↓
� � � � � � � �

To chop up a row of widgets in the prescribed manner, we may simply choose,
for each interstice, whether or not to break the row up at that point. That’s
n − 1 independent choices, each among 2 options, so there are 2n−1 ways to
chop up the row.

2 Gowers

Perusing Timothy Gowers’s website (mentioned in the notes for May 22), I find
that he has discussed some of things we have discussed. His approaches are
very insightful; I encourage you to look at them.

We discussed the Mean Value Theorem, and interpreted it as a tool for rea-
soning from tangent slopes to secant slopes. Gowers shows why we need such
a theorem by trying to prove that a differentiable function is increasing iff its
derivative is nonnegative without using MVT. See http://www.dpmms.cam.

ac.uk/∼wtg10/meanvalue.html.
We also discussed whether Z can be bounded above in some larger ring.

Gowers approaches the question from a different point of view: he observes
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that the proof that Z is unbounded in R (see the notes for June 6) uses the
completeness axiom, and inquires whether this is really necessary. He then
proves that it is, by furnishing an example of a structure satisfying all the
other axioms of R (i.e., an ordered field), but in which Z is bounded. The con-
struction is similar to the one in our notes for June 13, but better. See http:

//www.dpmms.cam.ac.uk/∼wtg10/meta.integers.html. Note that, from Gow-
ers’s perspective, this is a proof about proofs: the fact that Z can be bounded in
an ordered field entails that any proof of Z’s unboundedness in R must invoke
(directly or indirectly) the completeness axiom. He gives a few other proofs of
this “metamathematical” type; here’s another nice one: http://www.dpmms.

cam.ac.uk/∼wtg10/meta.fta.html. This one shows that any proof of the Funda-
mental Theorem of Arithmetic must invoke other properties of Z than the fact
that it is an integral domain (i.e., a cancellative, commutative ring with unity).
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3 Some sums

Ray asked about finding a closed form for

Sn = 1 � n+ 2(n− 1) + 3(n− 2) + � � �+ n � 1 .

I suggested this:

Sn =

n∑
k=1

k(n− k+ 1) = (n+ 1)

n∑
k=1

k−

n∑
k=1

k2 .

We know how to do the remaining sums. (The final, simplified result is quite
tidy; there should be some simple proof of its correctness. I think I might be
able to give a geometric proof if I had enough lego.)

On the sums mentioned last week: Ray says he can prove that

n∑
r=1

� r∑
s=1

s
�−1

=
2n

n+ 1
,

and so, as n → ∞, the sum tends to 2. We might look at Ray’s proof next week.
(The second sum is proving more difficult, as advertised.)

When determining the number of compositions of n, and when determin-
ing the number of bistrings of length n with no consecutive zeroes (see last
week’s notes), we applied brute force to get the first few values of a sequence,
then recognized the numbers. Sometimes we don’t recognize the numbers: for
example, consider

Sn =
∑
k

�
n

3k

�
.

Here’s the first few values:

n Terms Sn
0 1 1

1 1 1

2 1 1

3 1+ 1 2

4 1+ 4 5

5 1+ 10 11

6 1+ 20+ 1 22

Recognize those? I sure don’t. (There are still things to notice. For example,
each sum is approximately twice the previous one.) I leave the problem of
evaluating this sum with you.
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4 Empty sums and products

We briefly discussed today why an empty sum is 0 while an empty product is 1.
The crucial fact here is that we’re not trying to find out what the “actual” sum
with no terms and product with no factors are; we’re defining them. “Sum”
and “product” are our words. They can mean whatever we want.

So, what do we want? We want our algebraic manipulations to be easy.
That is, we want the algebraic rules which apply to sums that actually have
terms to apply equally well to sums that don’t. That way, we can just apply
those manipulations without worrying about special cases like the empty set
and whatnot.

For example, let S be some set of integers. It seems natural that∑
n2S

n =
∑
n2S
n even

n+
∑
n2S

n odd

n .

Indeed, the proof would be just this statement: every element in S is either even
or odd, and cannot be both. When S contains both even and odd elements —
say, S = {1, 2, 3, 4, 5} — this makes great sense; it says simply that

1+ 2+ 3+ 4+ 5 = (2+ 4) + (1+ 3+ 5) ,

which is an easy consequence of the associativity and commutativity of addi-
tion. But what if S = {1, 3, 5}? Then the statement is

1+ 3+ 5 = () + (1+ 3+ 5) ,

where the () represents a sum of no terms. Obviously the only way this can be
true is if that empty sum is 0.

Similarly, for products it is natural that∏
n2S

n =
� ∏

n2S
n even

n
�� ∏

n2S

n odd

n
�

,

and when S = {1, 3, 5} this says that

1 � 3 � 5 = ()(1 � 3 � 5) ,

which can only be true if the empty product is 1.
The way to approach these matters is not with the question, “What is the

value of a sum with no terms?” That question presupposes that such a sum has
a definite value which we should determine. The right question is, “Is there a
way to define ‘sums with no terms’ so that algebra involving such sums retains
the familiar and convenient properties of the algebra of sums that actually have
terms?” (And similarly for products.)
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As usual, Gowers has a similar, but more profound, discussion; see http://

www.dpmms.cam.ac.uk/∼wtg10/equations.html for an explanation of how “solv-
ing an equation” can be understood as being, in part, the same kind of defini-
tion game. Very worth your time. Read it. Now.
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