
Math Club Notes: 2005 June 20

1 Bitstrings and ants

Another tidbit from my Cmpt 272 course last winter: how many bitstrings of
length n are there with no consecutive zeroes? (A bitstring is a finite sequence
of 0s and 1s.)

Perhaps it is not obvious how to proceed in this question. There is a saying
among programmers: when in doubt, use brute force. Let’s just count all such
bitstrings for the first few n.

n Bitstrings Count
1 0 1 2
2 01 10 11 3
3 010 011 101 110 111 5
4 0101 0110 0111 1010 1011 1101 1110 1111 8

Recognize those numbers?
If this sequence is what it appears to be, then we should be able to explain,

for example, the 8 bitstrings of length 4 as being 3 + 5 bitstrings, somehow
related to the 3 bitstrings of length 2 and the 5 bitstrings of length 3. After
staring at the bitstrings of length 4 for a while, we see how to make that work.
Three of them are 01 followed by one of the bitstrings of length 2:

0101 0110 0111

The other five are 1 followed by one of the bitstrings of length 3:

1010 1011 1101 1110 1111

It’s easy to see that a bitstring of any other form would have two consecutive
zeroes. Writing this idea out a bit more formally:

Let sn denote the number of bitstrings of length n with no consecutive ze-
roes. Evidently s0 = 1 (since the bitstring of length 0, namely the empty string,
has no consecutive zeroes), and s1 = 2 (since neither bitstring of length 1 has
consecutive zeroes). If n � 2, then count the bitstrings of length n as follows.
The first bit of the string must be either 0 or 1. If it is 1, the remaining bits then
form one of the sn−1 bitstrings of length n− 1. If the first bit is 0, then to avoid
consecutive zeroes the second bit must be 1, and the remaining bits then form
one of the sn−2 bitstrings of length n− 2. Thus sn satisfies the recurrence

s0 = 1

s1 = 2

sn = sn−1 + sn−2 (n � 2)
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and a trivial induction shows that sn = Fn+2, the (n+ 2)th Fibonacci number.
Many weeks after seeing the above in class, I finally noticed that we can also

relate these bitstrings directly to the original Fibonacci problem about rabbits.
Well, that problem sucks. Let’s do insects instead.

In some species of insect — such as ants, I think — males are produced
parthenogenetically by females, but females are produced by the more familiar
type of mating. That is, a male has just a mother, no father, while a female has
both a mother and a father. Consider the family tree of a male of such a species:

It’s easy to see that this is the same structure as in Fibonacci’s rabbit problem,
just upside down, and with “male ant” and “female ant” instead of “pair of
young rabbits” and “pair of mature rabbits”. Thus the number of ancestors in
generation n (counting the male ant at the bottom as generation 1) is Fn.

The bitstrings with no consecutive zeroes appear in this tree as lineage
traces. In any path through the tree starting at the bottom and ending at the
top, there will be no consecutive male ants, since males do not have fathers.
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2 Distributivity

The notes for May 30 mention that distributivity can be understood as meaning
that, for example, when

(a1 + a2)(b1 + b2 + b3)(c1 + c2 + c3)

is multiplied out, the result is a sum of products, one for every combination
of one ai, one bi, and one ci. You can read a product such as the above to
emphasize this: where you have +, say “one of”; where you have �, say “and”.
In this example, you’d say:

One of a1, a2,
and one of b1, b2, b3,
and one of c1, c2, c3.

This describes how to make the terms in the full expansion.
Today we looked at a couple applications of this fact.

2.1 Sum of products of subsets

A problem from a contest for undergrads at the University of Waterloo:

Prove that ∑ 1

i1i2 � � � ik
= 2001

where the summation is over all nonempty subsets {i1, i2, . . . , ik} of
the set {1, 2, . . . , 2001}.

(The contest was held in 2001.)
The number 2001 is awkwardly large. To get a handle on what the problem

is talking about, let’s use 4 instead. Then we wish to sum “over all nonempty
subsets” of {1, 2, 3, 4}; these are

{1} {3} {1, 2} {1, 4} {2, 4} {1, 2, 3} {1, 2, 4} {1, 2, 3, 4}

{2} {4} {1, 3} {2, 3} {3, 4} {1, 3, 4} {2, 3, 4}

Now, a linguistic note: a phrase such as

. . . all nonempty subsets {i1, i2, . . . , ik} . . .

is an example of what grammarians call “apposition”. It’s like saying, “my
brother-in-law, the idiot”; the two noun phrases “my brother-in-law” and “the
idiot” refer to the same person, and this is indicated by just sticking them to-
gether. Similarly, in the problem, the words “all nonempty subsets” and the
symbols “{i1, i2, . . . , ik}” refer to the same thing. Mathspeak uses apposition
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this way to assign names. That is, here we are to understand that {i1, i2, . . . , ik}
is a name for a nonempty subset, in fact, a name for all of them, varying during
the sum. So, for example, for one of the terms we take {i1, i2, . . . , ik} = {1, 3, 4},
so that in this instance k = 3, and, say, i1 = 1, i2 = 3, and i3 = 4, and the term
corresponding to this subset is 1/(1 � 3 � 4).

I describe all this in detail because it is rarely explained, and because in this
particular problem the author’s notation is annoyingly difficult. I’d say it this
way: Let A = {1, 2, . . . , 2001}. Prove that∑

S�A

S6=?

∏
k2S

1

k
= 2001 .

Anyway, the sum we are dealing with (using 4 instead of 2001) is

1
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1
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1
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1
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+
1
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+

1
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+

1
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+

1
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+

1

2 � 4
+

1

3 � 4

+
1
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+

1
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+

1
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+

1

2 � 3 � 4

+
1

1 � 2 � 3 � 4

You might wish to verify that these do indeed add up to 4.
This problem can be solved easily by applying a special case of our distribu-

tivity trick. Consider this example:

(1+ a)(1+ b)(1+ c) = 1+ a+ b+ c+ ab+ ac+ bc+ abc

Reading the left-hand side as suggested above, we start with “one of 1, a”, or,
a bit more naturally, “either 1 or a”. But since taking 1 does nothing to the
resulting product, it’s even more natural to say “take a, or don’t”. So the eight
terms on the right-hand side arise from choosing variously whether to take a
or not, whether to take b or not, and whether to take c or not. Thus we get one
term for every subset of {a, b, c}. The empty set gives rise to the term 1.

Now, the problem wants a sum with one term for every nonempty subset;
call that N. Then 1 + N is the sum with one term for every subset, and our
distributivity trick applies:

1+N =
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Much cancellation — this is a telescoping product. So

1+N =
2002

1

and we’re done.
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2.2 Sum of divisors

Let σ(n) denote the sum of the (positive) divisors of n. For example,

σ(60) = 1+ 2+ 3+ 4+ 5+ 6+ 10+ 12+ 15+ 20+ 30+ 60 = 168 .

If we happen to know the prime factorization of n, we can assemble its divisors
easily. The divisors of 60 = 22 � 3 � 5, for example, can have only 2, 3, and 5 in
their prime factorizations, and with exponents that are not greater than the
corresponding exponents in the prime factorization of 60. Thus the divisors
of 60 are

203050 = 1 213050 = 2 223050 = 4

203150 = 3 213150 = 6 223150 = 12

203051 = 5 213051 = 10 223051 = 20

203151 = 15 213151 = 30 223151 = 60

Their sum, then, is a sum of products, each consisting of

one of 20, 21, 22,
and one of 30, 31,
and one of 50, 51.

Thus
σ(60) = (1+ 2+ 4)(1+ 3)(1+ 5) = 7 � 4 � 6 = 168 .

In general,

σ(2e23e35e5 � � � ) =
∏

p prime

(1+ p+ p2 + � � �+ pep) ,

where ep is a nonnegative integer for every prime p. Of course, that’s a geo-
metric series in there, so we can also write this as

σ(2e23e35e5 � � � ) =
∏

p prime

pep+1 − 1

p− 1
.

(This result is well-known; it appears in all introductions to number theory.
I’ve never seen it explained quite this way, though.)

3 Sums of reciprocals of sums

A couple sums for y’all to think about:
∞∑
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The problem is, of course, to evaluate them. The first one is easier. You might
find some bits of the notes for May 9, May 22, and June 13 useful.
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