
Math Club Notes: 2005 June 13

1 An integral

A fun problem: evaluate ∫π
0

ln sin xdx .

Note that the integral is improper — the integrand isn’t defined at either end-
point. So you might want to show that the integral converges. But even as-
suming convergence, evaluating it is tricky.

2 Circular relations

A relation R is called circular if

8x, y, z : xRy and yRz =⇒ zRx .

Circularity is like transitivity, but backwards.
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In these figures, the solid arrows indicate what is given, and the dashed arrows
indicate what may be inferred. The cycle in the right-hand graph is the basis
for the name “circular”.

A question seen in the Cmpt 272 seminar last winter: Show that if a relation
is reflexive and circular then it is an equivalence relation.

Recall that to be an equivalence relation consists of having three properties:

1. Reflexivity: 8x : xRx

2. Symmetry: 8x, y : xRy =⇒ yRx

3. Transitivity: 8x, y, z : xRy and yRz =⇒ xRz

Reflexivity is given, so we need only show symmetry and transitivity. Given
the remark above that circularity is like transitivity but backwards, it’s easy
to spot that, once you have symmetry, transitivity quickly follows. Ray and
Eileen did it by reversing the hypothesis:

xRy and yRz =⇒ yRx and zRy (symmetry)

=⇒ zRy and yRx (commutativity of “and”)

=⇒ xRz (circularity)
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It can also be done by reversing the conclusion:

xRy and yRz =⇒ zRx (circularity)

=⇒ xRz (symmetry)

So now it remains only to show symmetry.
What we want to show is

xRy =⇒ yRx .

There is a simple proof-finding strategy which happens to work here. The idea
is to make something you know look like what you’re trying to prove. In this
case, we are given reflexivity and circularity; of the two, circularity looks more
like what we want to show. It has a “⇒”, and the conclusion is that something
R something else. Lining these up, we have

xRy and yRz =⇒ zRx (known)

xRy =⇒ yRx (desired)

In fact, there is a further similarity between these two: both have “xRy” in the
hypothesis. Line that up:

xRy and yRz =⇒ zRx (known)

xRy =⇒ yRx (desired)

So now, make what is known look more like what is desired. The desired
conclusion has y where we have z; so replace z with y:

xRy and yRy =⇒ yRx (known)

xRy =⇒ yRx (desired)

If only we could show that yRy! But wait — that’s just reflexivity, which is
given.

So here’s a proof of symmetry:

xRy =⇒ xRy and yRy (reflexivity)

=⇒ yRx (circularity)

(You could also come up with this proof by trying to find some way — any
way — to combine the givens.)

Historical note: I think Hilbert used this in his development of the foun-
dations of geometry. He took as axioms that the relation “is congruent to” is
reflexive and circular, then proved as a theorem that it is an equivalence rela-
tion. (I think this is mentioned in Hartshorne, but I can’t check because my
copy is out on loan.)
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3 Cauchy Mean Value Theorem

For another example of this proof-finding strategy, the Cauchy Mean Value
Theorem:

If f and g are continuous on [a, b] and differentiable on (a, b), then

f 0(c)(g(b) − g(a)) = g 0(c)(f(b) − f(a))

for some c 2 (a, b).

(This is more or less the same as saying that

f 0(c)

g 0(c)
=

f(b) − f(a)

g(b) − g(a)
=

(f(b) − f(a))/(b− a)

(g(b) − g(a))/(b− a)
.

On the far right, we have the ratio of the average velocities of f and g; the
theorem states that at some point betwen a and b, the instantaneous velocities
are in that same ratio. Of course, this reformulation ignores the possibility that
g 0(c) or g(b) − g(a) might be zero, but the point of the reformulation is just to
express the intuitive content of the theorem, so it’s okay to reason a bit sloppily.
This theorem is, by the way, handy for proving L’Hôpital’s Rule. Note also that
if g(x) = x, we get the usual MVT.)

How to prove this theorem? Its overall structure reminds us of Rolle’s The-
orem, which states:

If f is continuous on [a, b] and differentiable on (a, b), then f 0(c) = 0

for some c 2 (a, b).

Just as in the theorem to be proved, here we assume continuity and differen-
tiability on some interval, and deduce the existence of a value in that interval
with a certain property.

We can find a proof of the Cauchy Mean Value Theorem by trying to make
it look more like Rolle’s Theorem. (This is the same proof-finding strategy, but
in reverse; in the previous example, we made what we knew look like what we
wanted, while here we are making what we want look like what we know.)

9c 2 (a, b) : f 0(c) = 0 (Rolle)

9c 2 (a, b) : f 0(c)(g(b) − g(a)) = g 0(c)(f(b) − f(a)) (Cauchy MVT)

First, let’s rename the function that appears in Rolle’s Theorem; there’s no rea-
son it has to be the same f as in the Cauchy MVT.

9c 2 (a, b) : ϕ 0(c) = 0 (Rolle)

9c 2 (a, b) : f 0(c)(g(b) − g(a)) = g 0(c)(f(b) − f(a)) (Cauchy MVT)
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Rolle concludes that something is zero; rewrite Cauchy MVT in that form:

9c 2 (a, b) : ϕ 0(c) = 0 (Rolle)

9c 2 (a, b) : f 0(c)(g(b) − g(a)) − g 0(c)(f(b) − f(a)) = 0 (Cauchy MVT)

If only we could find a function ϕ such that

ϕ 0(c) = f 0(c)(g(b) − g(a)) − g 0(c)(f(b) − f(a)) .

Well, that’s not too hard. We can just take

ϕ(x) = f(x)(g(b) − g(a)) − g(x)(f(b) − f(a)) .

(Note that g(b) − g(a) and f(b) − f(a) are constants.)
With this definition, the conclusion of Rolle’s Theorem is equivalent to what

we wish to prove. So all we need to do is show that the hypotheses of Rolle’s
Theorem hold; as it happens, they do.

The resulting proof:

Suppose f and g are continuous on [a, b] and differentiable on (a, b). Define
a function ϕ on [a, b] by

ϕ(x) = f(x)(g(b) − g(a)) − g(x)(f(b) − f(a)) .

Then ϕ is continuous on [a, b] (since f and g are), and differentiable on (a, b)

(since f and g are), and

ϕ(a) = f(a)(g(b) − g(a)) − g(a)(f(b) − f(a))

= f(a)g(b) − g(a)f(b)

= f(b)(g(b) − g(a)) − g(b)(f(b) − f(a))

= ϕ(b)

So ϕ satisfies the hypotheses of Rolle’s Theorem; thus for some c 2 (a, b) we
have

0 = ϕ 0(c) = f 0(c)(g(b) − g(a)) − g 0(c)(f(b) − f(a)) ,

that is,
f 0(c)(g(b) − g(a)) = g 0(c)(f(b) − f(a)) ,

QED.
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Incidentally, the algebra to show that ϕ(a) = ϕ(b) can also be written in
terms of determinants:

ϕ(a) =

���� f(a) g(a)

f(b) − f(a) g(b) − g(a)

����
=

���� f(a) g(a)

f(b) g(b)

���� (R2 → R2 + R1)

= −

���� f(b) g(b)

f(a) g(a)

���� (R1 ↔ R2)

=

���� f(b) g(b)

−f(a) −g(a)

���� (R2 → −R2)

=

���� f(b) g(b)

f(b) − f(a) g(b) − g(a)

���� (R2 → R2 + R1)

= ϕ(b)

4 Series

A few sessions ago we considered the geometric series

1+ x+ x2 + x3 + � � � =
1

1− x
.

Replacing x with −x, we obtain

1− x+ x2 − x3 + � � � =
1

1+ x
.

Integrating both sides, we obtain

x− 1
2
x2 + 1

3
x3 − 1

4
x4 + � � � = ln |1+ x| .

(Well, we do need a constant of integration; maybe these antiderivatives differ
by a constant. But by taking x = 0, we see that both sides are zero; so the
constant is zero.) Now take x = 1 to obtain

1− 1
2
+ 1
3
− 1
4
+ � � � = ln 2 ,

a famous result. Replacing x with −x2 at the beginning instead yields

1− 1
3
+ 1
5
− 1
7
+ � � � = π

4
,

another famous result. (What if we replace x with −x3? A cute puzzle: what’s
the next number in the sequence ln 2, π

4
, . . . ?)

These derivations seem a little dubious. For one thing, the original formula
for the geometric series is only valid when −1 < x < 1; otherwise the left-
hand side diverges. But then later we apply a derived formula to one of the
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endpoints; it turns out it’s okay here, but it does need proof. For another, when
we integrate the series term by term and say that’s the same as integrating the
closed form, we’re really saying that

∞∑
n=0

� ∫
(−x)n dx

�
=

∫ � ∞∑
n=0

(−x)n
�
dx .

It’s not at all clear that we can swap
∑

and
∫

like this. Well, if the sum is
finite we can, but this sum is infinite, so it’s really a limit of partial sums; and
the integral is a limit of Riemann sums. Alas, we cannot always swap limits.
(There’s a great example of this on Timothy Gowers’s website: http://www.

dpmms.cam.ac.uk/∼wtg10/justdoit.html. He effortlessly constructs an example
in which swapping limits changes the result.)

Dubious or not, these derivations are pretty cool.

5 Upper bounds on the integers

Last session, I asked whether it was possible to embed Z in a larger structure
such that Z would then be bounded above. More precisely: does there exist an
ordered ring with a subring that is isomorphic to Z and bounded above?

(If we happen to construct a ring where the subring is not “really” Z, just
isomorphic to Z, then naturally we will want the isomorphism to preserve both
arithmetic and order.)

It turns out that there are such rings. One way to find one is to just add
an upper bound to Z, and see what the ring axioms then force you to do. One
hopes to get enough information about what the ring has to look like to figure
out what it is (or, if it’s not a familiar ring, enough information that one can
craft a definition of it).

So, let’s call our upper bound “∞”. (Just a name, but suggestive of its in-
tended role.) Our ring contains at least

. . . −3 −2 −1 0 1 2 3 . . .∞
What else do we need? Well, the ring must be closed under addition, so we
will need ∞ + 1 and ∞ + 2 and so on. Now, under the usual conception of ∞
(if there is such a thing), we might think that ∞ + 1 = ∞. But we cannot do
this and keep the ring structure. For since rings contain additive inverses, we
can cancel by subtracting; that is, ∞+ 1 = ∞ would entail that 1 = 0, which is
no good. So we’ll have to have ∞ + 1 6= ∞. In fact, by the order axioms, we’ll
need ∞+ 1 > ∞, because 1 > 0. So:

. . . −3 −2 −1 0 1 2 3 . . .

. . . ∞− 3 ∞− 2 ∞− 1 ∞ ∞+ 1 ∞+ 2 ∞+ 3 . . .
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In previous notes, we observed that if 0 < x then −x < 0; since ∞ is supposed
to be an upper bound for the integers, in particular we’ll have 0 < ∞, and
so −∞ < 0. This, and closure under addition again, mean we have to have

. . . −∞− 3 −∞− 2 −∞− 1 −∞ −∞+ 1 −∞+ 2 −∞+ 3 . . .

. . . −3 −2 −1 0 1 2 3 . . .

. . . ∞− 3 ∞− 2 ∞− 1 ∞ ∞+ 1 ∞+ 2 ∞+ 3 . . .

What else? Well, we need closure under multiplication too; in particular, we’ll
need integer multiples of ∞. (We can’t have 2∞ = ∞, because then subtract-
ing ∞ from both sides yields ∞ = 0, which is no good.)

. . . −2∞− 2 −2∞− 1 −2∞ −2∞+ 1 −2∞+ 2 . . .

. . . −∞− 2 −∞− 1 −∞ −∞+ 1 −∞+ 2 . . .

. . . −2 −1 0 1 2 . . .

. . . ∞− 2 ∞− 1 ∞ ∞+ 1 ∞+ 2 . . .

. . . 2∞− 2 2∞− 1 2∞ 2∞+ 1 2∞+ 2 . . .

By closure under multiplication again, we need ∞2, which also cannot be
the same as ∞. Recall that one consequence of order is that if 0 < x then
multiplying an inequality by x preserves its sense (i.e., does not reverse it). So:
since ∞ is an upper bound for the integers, we have 1 < ∞. Multiplying by ∞
(which is okay because 0 < ∞) yields ∞ < ∞2, whence ∞ 6= ∞2.

After a while, it begins to look like our ring will consist of things like

a0 + a1∞+ a2∞2 + � � �+ an∞n ,

where the ai are integers. Look familiar? These are just polynomials in ∞.
So, how about Z[x], the ring of polynomials with integer coefficients? It’s

a ring; it contains Z as a subring; as a bonus, it has unity, commutativity, and
even unique factorization. Can it be ordered? Replacing ∞ with x above, we
see that we want an order v such that, for example,

0 v 1 v 2 v � � � v x− 1 v x v x+ 1 v � � � v x2 − 1 v x2 v x2 + 1 v � � �

There’s a couple ways to define the order that’s implied here. One way is
to think of these polynomials as functions, and note that we want p v q if
and only if, er, p(∞) � q(∞), that is, p is smaller than q “at infinity”. What
does that mean? The usual rewrite-to-eliminate-“infinity” maneuver yields the
statement “p(x) � q(x) for sufficiently large x”, which we could express as

p v q ⇐⇒ lim
x→∞(p(x) − q(x)) � 0

(For the (typical) case where the limit is infinite, we define −∞ < 0 < +∞.)
Everything so far is investigation, that is, it’s all stuff you’d do on scrap

paper before writing your solution. The solution would consist of a proof that

Steven Taschuk � 2010 January 5 � http://www.amotlpaa.org/mathclub/2005-06-13.pdf 7

http://www.amotlpaa.org/mathclub/2005-06-13.pdf


Z[x] is in fact an ordered ring under this relation v, and that its subring Z is
bounded above under that order. So we need to prove the order axioms:

1. 8p : p v p. (Reflexivity.)

2. 8p, q : either p v q or q v p. (Totality?)

3. 8p, q : p v q and q v p =⇒ p = q. (Antisymmetry.)

4. 8p, q, r : p v q and q v r =⇒ p v r. (Transitivity.)

5. 8p, q, r : p v q =⇒ p+ r v q+ r. (Compatibility with +.)

6. 8p, q : 0 v p and 0 v q =⇒ 0 v pq. (Compatibility with �.)

I leave these proofs as exercises; they’re mostly straightforward. You’ll need
the fact that, as x → ∞, a polynomial either tends to a finite value, increases
without bound, or decreases without bound. (For example, a polynomial can’t
fail to have a limit by oscillation, as the sine function does.) You’ll also need the
fact that the only way for the limit to be finite is if the polynomial is constant.

(It’s also instructive to find out how this relation v fails to order the field of
rational functions of x, for example.)

The technique used here is of fairly wide applicability. It can be used to de-
fine C, for example: imagine that all you know is R, and you wonder whether
you can make a larger field in which −1 has a square root. Call that square
root i, and see what you are forced to do by the field axioms.

It can also be used to solve the following problem: show that every ring is
a subring of a ring with unity. (That is, given a ring A, construct a ring with
unity that contains a subring isomorphic to A.)

Another neat thing about the particular example considered here is that
it could be used to treat infinity in a rigorous way. We replaced ∞ with x

because we’re familiar with polynomials, but we don’t have to. We could
do all of our arithmetic with ∞, and talk about a hierarchy of infinities in
which ∞ < ∞ + 1 < 2∞ < ∞2 and so on, all the while using “naı̈ve” arith-
metic (i.e., the arithmetic of an ordered ring). If someone challenges what we’re
doing, say, complaining that ∞ isn’t a number and so it’s not legitimate to do
arithmetic with it, we can explain that we’re not “really” talking about infin-
ity the number, we’re talking about infinite functions, that is, functions whose
values increase or decrease without bound under a certain limiting process.

I have seen and heard hints here and there that a similar thing can be
done with “infinitesimals”, understood intuitively as infinitely small quanti-
ties, sometimes treated as zero (except that you can divide by them, because
they’re not really zero, just infinitely small), and understood formally as func-
tions that tend to zero under some limiting process. In fact, I think there’s a
way to develop all of calculus from this point of view.
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