
Math Club Notes: 2005 May 22

1 Web sites

Mehran asked about good math web sites. Here’s a few:

http://mathworld.wolfram.com/

MathWorld. A reference site. Few proofs and little discussion, but good
if you basically know what you’re looking up and just need to be re-
minded.

http://www.mathpages.com/home/

MathPages. A collection of Kevin Brown’s posts to sci.math. Lots of
interesting stuff.

http://www.dpmms.cam.ac.uk/∼wtg10/

A small collection of short articles by Timothy Gowers. The author tries
to show how certain results and ideas could be discovered without hav-
ing a flash of genius. For a sample, see section 2 below.

http://aleph0.clarku.edu/∼djoyce/java/elements/toc.html

Euclid’s Elements, in Heath’s translation (but, alas, without his notes). I
think that if your browser does Java you get diagrams you can fiddle
with.

2 Cauchy-Schwarz

We looked again at the Cauchy-Schwarz inequality, this time not at applica-
tions but at proofs. We got a nice one in Math 225, using the algebraic proper-
ties of the dot product.

Timothy Gowers, whose web site I mentioned above, gives an alternative,
very natural derivation. Start with two vectors

~u =

264 u1

...
un

375 and ~v =

264 v1
...
vn

375 .

How, Gowers asks, could we express the fact that these vectors are propor-
tional? A natural first attempt:

9c : 8i : ui = cvi

This is a little awkward because it introduces the constant c, which we don’t
really care about. Besides, we know what it is: it’s ui/vi. Rather than say that
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all the values ui/vi are equal to c, we might as well just say that they’re equal
to each other:

8i : 8j : ui

vi
=
uj

vj

There’s still a problem: some of the vi might be zero. So let’s cross-multiply
and say this instead:

8i : 8j : uivj = ujvi

This version works, that is, it is indeed equivalent to the statement that ~u and~v

are proportional.
Now, rather than saying that some two expressions are equal, it’s often

more convenient to say that one expression is equal to zero. (This is a high
school maneuver when solving polynomial equations.) So:

8i : 8j : uivj − ujvi = 0

Now comes the important maneuver, which, as Gowers says, is very common
and should be part of your standard inventory of tricks: to say that a bunch of
real numbers are zero, say that the sum of their squares is zero.∑

i

∑
j

(uivj − ujvi)
2 = 0

Now we have an equation which expresses the fact that ~u and ~v are propor-
tional.

It doesn’t take much to notice that, whether they’re proportional or not, this
sum of squares must be at least zero. Thus∑

i

∑
j

(uivj − ujvi)
2 � 0 ,

and we have equality exactly when the vectors are proportional. Now for a
little routine sum manipulation:

0 �
∑
i

∑
j

(uivj − ujvi)
2

=
∑
i

∑
j

(u2
i v

2
j + u

2
j v

2
i − 2uiujvivj)

=
∑
i

∑
j

u2
i v

2
j +

∑
i

∑
j

u2
j v

2
i −

∑
i

∑
j

2uiujvivj

=
∑
i

�
u2
i

∑
j

v2j

�
+
∑
i

�
v2i

∑
j

u2
j

�
− 2

∑
i

�
uivi

∑
j

ujvj

�
=
�∑

i

u2
i

��∑
j

v2j

�
+
�∑

i

v2i

��∑
j

u2
j

�
− 2
�∑

i

uivi

��∑
j

ujvj

�
= 2k~uk2k~vk2 − 2(~u �~v)2

Behold! Cauchy-Schwarz.
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3 Bernoulli

In the notes for May 16, I used the manipulation

(1+ x)n =

n∑
k=0

�
n

k

�
xk �

1∑
k=0

�
n

k

�
xk = 1+ nx .

Here n is a positive integer and x is a nonnegative real number. The derivation
relies on these facts: since n � 1, we know that changing from

∑n
k=0 to

∑1
k=0

either does nothing or throws terms away; since x � 0, we know that the
discarded terms are nonnegative. Thus we get �.

The result, that (1 + x)n � 1 + nx, is known as Bernoulli’s inequality. It
can be extended to real x � −1, though not, as far as I can see, using the above
argument. A simple induction proves this more general version.

Once we have calculus, we can give this argument too: Let f(x) = (1+ x)n.
Then f 00(x) = n(n − 1)(1 + x)n−2 � 0 when x � −1 (since n � 1); thus f is
concave up on [−1,∞), that is, its graph lies above its tangent lines in that
interval. One of those tangent lines (the one at x = 0) is y = 1+ nx.

For even n, this concavity argument works for all of R, not just [−1,∞).
When n is odd, it doesn’t, and indeed, when n is odd, Bernoulli’s inequality
fails somewhere to the left of x = −1.

(By the way, the bare statement that f 00(x) = n(n− 1)(1+ x)n−2 is arguably
a little imprecise. Consider the cases n = 1 and n = 2 and take x = −1 to see
why. More on this in the future, perhaps.)

I don’t know what this inequality is for.

4 Binet

We discussed the Fibonacci numbers a bit.
Because the recurrence expresses each element in terms of the preceding

two, it is in some ways more natural to think of the Fibonacci sequence not as
a sequence of numbers but as a sequence of pairs of numbers:�

1

0

�
,

�
1

1

�
,

�
2

1

�
,

�
3

2

�
,

�
5

3

�
,

�
8

5

�
, . . .

Each element of this sequence has all the information needed to compute the
next one. Indeed, we have�

Fn+1

Fn

�
=

�
Fn + Fn−1

Fn

�
=

�
1 1

1 0

� �
Fn
Fn−1

�
.

Repeating this expansion n times, we obtain�
Fn+1

Fn

�
=

�
1 1

1 0

�n �
F1
F0

�
=

�
1 1

1 0

�n �
1

0

�
.
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So now we are thinking of a sequence of vectors in R2, starting with the
standard basis vector

�
1
0

�
, and iteratively applying a certain linear transfor-

mation, the one expressed by this matrix
�
1 1
1 0

�
. The most natural coordinate

system for studying this linear transformation is one built out of its eigenvec-
tors. By routine calculation, we find that�

1 1

1 0

� �
φ

1

�
= φ

�
φ

1

�
and

�
1 1

1 0

� � bφ
1

�
= bφ � bφ

1

�
,

where

φ =
1+

p
5

2
� 1.61803 and bφ =

1−
p
5

2
� −0.61803

are the roots of the characteristic equation λ2 = λ + 1. By expressing the first
vector in our sequence,

�
1
0

�
, in terms of this coordinate system, we obtain�

Fn+1

Fn

�
=

�
1 1

1 0

�n �
1

0

�
=

�
1 1

1 0

�n�
1p
5

�
φ

1

�
−

1p
5

� bφ
1

��

=
1p
5

 �
1 1

1 0

�n �
φ

1

�
−

�
1 1

1 0

�n � bφ
1

�!

=
1p
5

�
φn

�
φ

1

�
− bφn

� bφ
1

��
.

Therefore
Fn =

φn − bφn

p
5

.

This closed form for the Fibonacci numbers is known as Binet’s formula. It can
be proved directly by induction, if you’re so inclined; it can also be derived (in
a manner similar to the above) using generating functions.

Since |bφ| < 1, the term bφn tends to zero as n increases, while |φ| > 1,
so φn tends to infinity as n increases. That is, the φn term dominates for
large n. For one thing, this means that, for sufficiently large n, we can just
disregard the bφn and say that Fn is the nearest integer to φn/

p
5. (It turns out

that “sufficiently large” here means “at least zero”.) For another, it means that
Fn+1/Fn tends to φn+1/φn = φ as n increases.

(Note that

φn =

 
1+

p
5

2

!n

=
1

2n

n∑
k=0

�
n

k

�
(
p
5)k .

Taking a similar expansion of bφn, substituting into Binet’s formula, and sim-
plifying yields an identity expressing Fn as a sum of binomial coefficients. Try
writing out the sums in the case n = 4 to see how the simplification should
work.)
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5 Parallelogram area

Euclid I.35 states:

Parallelograms which are on the same base and in the same paral-
lels are equal to one another.

What this means is, if two parallelograms share a side (the “base”), and the
sides opposite the base are collinear, then the parallelograms are of equal area.

A B

CDEF

(Note that this figure shows the case where the upper sides CD and EF don’t
overlap; they might.)

Start the proof by showing that 4ADF and 4BCE are congruent; then ob-
serve that taking 4ADF away from the trapezoid ABCF leaves one of the par-
allelograms, while taking4BCE away leaves the other. (That’s Simson’s proof,
which is better than Euclid’s.)

One way to look at this result: shears preserve area. That is, transformations
of the plane such as

T
−→

preserve the area of all figures in the plane. (The proposition tells us that the
squares shown keep their area; other reasonable shapes can be approximated
by such squares as in a Riemann sum.)

Shearing in the x direction leaves y-coordinates unchanged. The effect on
x-coordinates is an increase in proportion to the y-coordinate: the x-axis is left
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alone; the line y = 1 is shifted, say, c units to the right; the line y = 2 is shifted
2c units to the right; and so forth. Thus a shear is given by

T

�
x

y

�
=

�
x+ cy

y

�
=

�
1 c

0 1

� �
x

y

�
.

That is, shearing in the x-direction is associated with a matrix of the form
�
1 c
0 1

�
;

that shearing preserves area appears here in the fact that the determinant of
such a matrix is 1, no matter what c is.

(To shear in some other direction, rotate to make that direction into the x-
direction, then shear as above, then rotate back. Rotations also preserve area,
of course.)

This kind of matrix has a lot to do with Gaussian elimination. We can restate
the problem of solving a linear system such as�

a11 a12
a21 a22

� �
x

y

�
=

�
b1
b2

�
in the following way: find x and y such that�

b1
b2

�
= x

�
a11
a21

�
+ y

�
a12
a22

�
.

In other words, find the coordinates of the point (b1, b2) in the coordinate sys-
tem generated by the columns of the coefficient matrix. Now, left-multiplying
both sides by

�
1 c
0 1

�
changes the problem into�

b1 + cb2
b2

�
= x

�
a11 + ca21

a21

�
+ y

�
a12 + ca22

a22

�
.

Note that this is the same as if we had applied the elementary row opera-
tion R1 → R1+cR2. (For this reason, this kind of matrix is called an elementary
matrix, which are often used when developing the basics of linear algebra for-
mally. What matrices correspond to the other elementary row operations?)

Thus, row reduction solves the problem “What are the coordinates of such-
and-such a point in such-and-such a coordinate system?” by shearing the space
a few times to turn the coordinate system in question into the standard coordi-
nate system. Then the problem is trivial.

(Well, shearing can’t always get the standard coordinate system. You might
have to scale in some directions too. And, of course, the original set of vectors
might not be linearly independent, in which case they generate a somewhat
screwed-up coordinate system.)
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6 Telescoping

In the notes for May 9, I suggested the following as an exercise: Use the pertur-
bation method to find a closed form for

∑n
k=0 Fk, where Fn is the nth Fibonacci

number.
On May 16, I mentioned an alternative method for evaluating this sum, but

forgot to put it in the notes. Here it is: from the recurrence we have

Fn = Fn+2 − Fn+1 .

Thus
n∑

k=0

Fk =

n∑
k=0

(Fk+2 − Fk+1)

=

n∑
k=0

Fk+2 −

n∑
k=0

Fk+1

=

n+1∑
k=1

Fk+1 −

n∑
k=0

Fk+1

= Fn+2 +

n∑
k=1

Fk+1 −

n∑
k=1

Fk+1 − F1

= Fn+2 − 1 .

The sigma notation can be a little opaque. Here’s the case n = 4, to illustrate
what’s going on:

0+ 1+ 1+ 2+ 3 = (−1+ 1) + (−1+ 2) + (−2+ 3) + (−3+ 5) + (−5+ 8)

= −1+ (1− 1) + (2− 2) + (3− 3) + (5− 5) + 8

= −1+ 8 .

This kind of sum is called a telescoping sum. The second half of each term
cancels the first half of the next term; thus every term in the middle is de-
stroyed, and the sum (like a collapsing telescope) is reduced to a couple un-
cancelled pieces from either end.

Closed forms for the following can be found by the same technique:

n∑
k=1

1

k(k+ 1)

n∑
k=0

�
m+ k

k

� n∏
k=0

cos(2kθ)

Recall that, in the Fibonacci example, we used the recurrence to massage the
expression into a telescoping form. In these three examples, that purpose is
served by partial fractions,

�
a

b−1

�
+
�
a
b

�
=
�
a+1
b

�
, and sin 2a = 2 sina cosa,

respectively.
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