
Math Club Notes: 2005 May 9

1 Implication

We discussed the fact that p → q is true whenever p is false. This is a common
difficulty when first introduced to symbolic logic.

One way to think of it: It’s not so much that p → q is right when p is false,
it’s just that it’s not wrong. (Suppose I say, “If it rains today, then I will take my
umbrella.”. Suppose that then it doesn’t rain. I didn’t say anything about that
situation, so I can’t very well be wrong, can I?)

Another: Suppose we decided that p → q would be false when p is false.
Then the truth table for p → q would be the same as for p∧ q (i.e., “p and q”).
But surely they don’t mean the same thing. (Are there other options for the
truth table? What’s wrong with them?)

2 Sums

We discussed Ray’s question: finding a closed form for

Sn = 1+ x+ x2 + � � �+ xn−1 .

Adding in the next term, we get

Sn + xn = 1+ x+ x2 + � � �+ xn−1 + xn

= 1+ x(1+ x+ � � �+ xn−2 + xn−1)

= 1+ xSn .

Now solving for Sn yields

Sn =
xn − 1

x− 1
,

which is the desired closed form.
This is often a successful approach with sums. One of my books calls it

“perturbing the sum”. The general plan is: add the next term in the sum, then
try to get from the result back to the original sum by another path. Then you
have an equation in Sn; solve for it.

Another example: find a closed form for

Sn = 1 � 2+ 2 � 4+ 3 � 8+ � � �+ n2n =

n∑
k=1

k2k .

Adding in the next term, we get

Sn + (n+ 1)2n+1 =

n+1∑
k=1

k2k =

n∑
k=0

(k+ 1)2k+1 =

n∑
k=0

k2k+1 +

n∑
k=0

2k+1
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Now, in the first sum, the k = 0 term is zero, so we can just drop it and obtain

n∑
k=0

k2k+1 =

n∑
k=1

k2k+1 = 2

n∑
k=1

k2k = 2Sn .

The second sum is just a geometric series, which we solved above:

n∑
k=0

2k+1 = 2

n∑
k=0

2k = 2 � 2
n+1 − 1

2− 1
= 2n+2 − 2 .

Putting it together and solving for Sn yields

Sn = (n− 1)2n+1 + 2 .

Exercise:
∑n

k=0 Fn, where Fn is the nth Fibonacci number. (F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2.)

An example of how this method can fail: let

�n = 1+ 4+ 9+ � � �+ n2 =

n∑
k=1

k2 .

Following the method, we add in the next term and obtain

�n + (n+ 1)2 =

n+1∑
k=1

k2 =

n∑
k=0

(k+ 1)2 =

n∑
k=0

(k2 + 2k+ 1)

=

n∑
k=0

k2 + 2

n∑
k=0

k+

n∑
k=0

1

= �n + 2

n∑
k=0

k+ (n+ 1) .

Alas, now the �n terms cancel each other. But from this point we can solve for
the remaining sum:

n∑
k=0

k = 1
2
n(n+ 1) .

So this experience produces an idea for evaluating �n: apply the perturbation
method to the sum of the first n cubes, have that sum cancel itself out and leave
us with an equation involving only sums of lower powers. Try it.
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3 Order

We discussed the idea of an ordered field, which (in Shilov’s treatment) is a
field together with a binary relation � satisfying the following axioms for all
field elements x, y, and z:

1. x � x.

2. Either x � y or y � x.

3. If x � y and y � x, then x = y.

4. If x � y and y � z, then x � z.

5. If x � y, then x+ z � y+ z.

6. If 0 � x and 0 � y, then 0 � xy.

The first four state that � is what they call a total order. (A partial order is a
relation that satisfies 1, 3 and 4, but not necessarily 2. Exercise: show that
“divides” is a partial order on Z+.) The fifth and sixth state that � is, in a
certain sense, compatible with the arithmetic operations of the field.

Evidently R and its subfields (e.g., Q, Q[
p
5]) are ordered fields; the usual

“less than or equal to” relation satisfies all the above axioms.
Shilov goes on to define �, <, and > in the obvious way, and proves a

bunch of elementary results about inequalities. Basically this is to show that
these axioms are sufficient to re-create the algebra of inequalities that we all
know and love. For example:

Theorem 1 x � y if and only if −y � −x.

Proof If x � y, then by axiom 5 (with z = −x − y), we have x − x − y �
y− x− y, that is, −y � −x. Conversely, if −y � −x, adding x+ y to both sides
yields x � y. �

That is, multiplying an inequality by −1 reverses it. Another example:

Theorem 2 0 � x2.

Proof By axiom 2, either 0 � x or x � 0. If 0 � x, then by axiom 6, we have 0 �
xx = x2. If, on the other hand, x � 0, then by the previous theorem, 0 � −x,
and so, by axiom 6 again, 0 � (−x)(−x) = (−x)2 = x2. �

This relies on the fact that x2 = (−x)2, which holds in any ring, hence in
any field. (Proof?)

Such results lead to more interesting ones. For example, C is not an ordered
field, that is, there is no relation on C satisfying the given axioms. Proof: Sup-
pose there were. Then we’d have 0 � i2 = −1 by the second theorem above,
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and so 1 � 0 by the first. But also 0 � 12 = 1. So, by axiom 3, we have 0 = 1,
which is false in C.

Exercise: Prove that Zp is not an ordered field.

4 Inequality

We looked at the arithmetic-geometric mean inequality, which states that, for
any positive reals x1, x2, . . . , xn,

n
p
x1x2 � � � xn � 1

n
(x1 + x2 + � � �+ xn) ,

and equality is attained exactly when all the xi are equal. The case n = 2, at
least, was known in antiquity, and can be proved in a few fairly quick ways.
Here’s one: note that (

p
x1 −

p
x2)

2 � 0; expand the left-hand side and rear-
range.

Another: Let x1 = AB and x2 = BC, with B between A and C. Bisect AC

at O, and describe a semicircle on AC as a diameter. Erect BP perpendicular
to AC, intersecting the semicircle at P.

A O CB

P Then OP = 1
2
(x1 + x2) and BP =p

x1x2. (Why?) If x1 = x2, then
B and O coincide and OP = BP.
If x1 6= x2, then OPB is a right trian-
gle, and its hypotenuse is its longest
side, that is, OP > BP.

Alas, these methods do not generalize to n > 2. For the general case, see
Dijkstra’s graceful presentation of a well-known proof: http://www.cs.utexas.
edu/users/EWD/ewd11xx/EWD1140.PDF. My favourite by far, and the one
we looked at on Monday. (It can be considered an induction on the number of
the xi which differ from the average of the xi.)

This inequality is often handy when you’re trying to maximize a product,
keeping the sum constant, or, conversely, minimize a sum, keeping the product
constant. For example, consider this routine calculus problem: what is the
largest possible area of a rectangle whose perimeter is p?

Let the side lengths be x and y. We wish to maximize xy, subject to the
constraint x+ y = p/2. By the arithmetic-geometric mean inequality,

xy = (
p
xy)2 �

�
x+ y

2

�2

=
�p
4

�2
,

and equality is attained exactly when x = y. Thus the maximum possible area
is (p/4)2, and it is attained by the square.

Isn’t that nicer than using calculus?
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Exercise: What is the minimum possible surface area of a rectangular solid
whose volume is 1, and for what solid is that minimum attained?
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