1 Implication

We discussed the fact that $p \rightarrow q$ is true whenever p is false. This is a common difficulty when first introduced to symbolic logic.

One way to think of it: It's not so much that $p \rightarrow q$ is right when p is false, it's just that it's not wrong. (Suppose I say, "If it rains today, then I will take my umbrella.". Suppose that then it doesn't rain. I didn't say anything about that situation, so I can't very well be wrong, can I?)

Another: Suppose we decided that $p \rightarrow q$ would be false when p is false. Then the truth table for $p \rightarrow q$ would be the same as for $p \wedge q$ (i.e., " p and q "). But surely they don't mean the same thing. (Are there other options for the truth table? What's wrong with them?)

2 Sums

We discussed Ray's question: finding a closed form for

$$
S_{n}=1+x+x^{2}+\cdots+x^{n-1} .
$$

Adding in the next term, we get

$$
\begin{aligned}
S_{n}+x^{n} & =1+x+x^{2}+\cdots+x^{n-1}+x^{n} \\
& =1+x\left(1+x+\cdots+x^{n-2}+x^{n-1}\right) \\
& =1+x S_{n} .
\end{aligned}
$$

Now solving for S_{n} yields

$$
S_{n}=\frac{x^{n}-1}{x-1}
$$

which is the desired closed form.
This is often a successful approach with sums. One of my books calls it "perturbing the sum". The general plan is: add the next term in the sum, then try to get from the result back to the original sum by another path. Then you have an equation in S_{n}; solve for it.

Another example: find a closed form for

$$
S_{n}=1 \cdot 2+2 \cdot 4+3 \cdot 8+\cdots+n 2^{n}=\sum_{k=1}^{n} k 2^{k} .
$$

Adding in the next term, we get

$$
S_{n}+(n+1) 2^{n+1}=\sum_{k=1}^{n+1} k 2^{k}=\sum_{k=0}^{n}(k+1) 2^{k+1}=\sum_{k=0}^{n} k 2^{k+1}+\sum_{k=0}^{n} 2^{k+1}
$$

Now, in the first sum, the $k=0$ term is zero, so we can just drop it and obtain

$$
\sum_{k=0}^{n} k 2^{k+1}=\sum_{k=1}^{n} k 2^{k+1}=2 \sum_{k=1}^{n} k 2^{k}=2 S_{n} .
$$

The second sum is just a geometric series, which we solved above:

$$
\sum_{k=0}^{n} 2^{k+1}=2 \sum_{k=0}^{n} 2^{k}=2 \cdot \frac{2^{n+1}-1}{2-1}=2^{n+2}-2 .
$$

Putting it together and solving for S_{n} yields

$$
S_{n}=(n-1) 2^{n+1}+2 .
$$

Exercise: $\sum_{k=0}^{n} F_{n}$, where F_{n} is the nth Fibonacci number. $\left(F_{0}=0, F_{1}=1\right.$, $F_{n}=F_{n-1}+F_{n-2}$.)

An example of how this method can fail: let

$$
\square_{n}=1+4+9+\cdots+n^{2}=\sum_{k=1}^{n} k^{2} .
$$

Following the method, we add in the next term and obtain

$$
\begin{aligned}
\square_{n}+(n+1)^{2} & =\sum_{k=1}^{n+1} k^{2}=\sum_{k=0}^{n}(k+1)^{2}=\sum_{k=0}^{n}\left(k^{2}+2 k+1\right) \\
& =\sum_{k=0}^{n} k^{2}+2 \sum_{k=0}^{n} k+\sum_{k=0}^{n} 1 \\
& =\square_{n}+2 \sum_{k=0}^{n} k+(n+1) .
\end{aligned}
$$

Alas, now the $\square_{\mathfrak{n}}$ terms cancel each other. But from this point we can solve for the remaining sum:

$$
\sum_{k=0}^{n} k=\frac{1}{2} n(n+1) .
$$

So this experience produces an idea for evaluating \square_{n} : apply the perturbation method to the sum of the first n cubes, have that sum cancel itself out and leave us with an equation involving only sums of lower powers. Try it.

3 Order

We discussed the idea of an ordered field, which (in Shilov's treatment) is a field together with a binary relation \leq satisfying the following axioms for all field elements x, y, and z :

1. $x \leq x$.
2. Either $x \leq y$ or $y \leq x$.
3. If $x \leq y$ and $y \leq x$, then $x=y$.
4. If $x \leq y$ and $y \leq z$, then $x \leq z$.
5. If $x \leq y$, then $x+z \leq y+z$.
6. If $0 \leq x$ and $0 \leq y$, then $0 \leq x y$.

The first four state that \leq is what they call a total order. (A partial order is a relation that satisfies 1, 3 and 4, but not necessarily 2. Exercise: show that "divides" is a partial order on \mathbb{Z}^{+}.) The fifth and sixth state that \leqis, in a certain sense, compatible with the arithmetic operations of the field.

Evidently \mathbb{R} and its subfields (e.g., $\mathbb{Q}, \mathbb{Q}[\sqrt{5}]$) are ordered fields; the usual "less than or equal to" relation satisfies all the above axioms.

Shilov goes on to define $\geq,<$, and $>$ in the obvious way, and proves a bunch of elementary results about inequalities. Basically this is to show that these axioms are sufficient to re-create the algebra of inequalities that we all know and love. For example:

Theorem $1 \quad x \leq y$ if and only if $-y \leq-x$.
Proof If $x \leq y$, then by axiom 5 (with $z=-x-y$), we have $x-x-y \leq$ $y-x-y$, that is, $-y \leq-x$. Conversely, if $-y \leq-x$, adding $x+y$ to both sides yields $x \leq y$.

That is, multiplying an inequality by -1 reverses it. Another example:
Theorem $20 \leq x^{2}$.
Proof By axiom 2, either $0 \leq x$ or $x \leq 0$. If $0 \leq x$, then by axiom 6, we have $0 \leq$ $x x=x^{2}$. If, on the other hand, $x \leq 0$, then by the previous theorem, $0 \leq-x$, and so, by axiom 6 again, $0 \leq(-x)(-x)=(-x)^{2}=x^{2}$.

This relies on the fact that $x^{2}=(-x)^{2}$, which holds in any ring, hence in any field. (Proof?)

Such results lead to more interesting ones. For example, \mathbb{C} is not an ordered field, that is, there is no relation on \mathbb{C} satisfying the given axioms. Proof: Suppose there were. Then we'd have $0 \leq \mathfrak{i}^{2}=-1$ by the second theorem above,
and so $1 \leq 0$ by the first. But also $0 \leq 1^{2}=1$. So, by axiom 3 , we have $0=1$, which is false in \mathbb{C}.

Exercise: Prove that \mathbb{Z}_{p} is not an ordered field.

4 Inequality

We looked at the arithmetic-geometric mean inequality, which states that, for any positive reals $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)
$$

and equality is attained exactly when all the x_{i} are equal. The case $n=2$, at least, was known in antiquity, and can be proved in a few fairly quick ways. Here's one: note that $\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)^{2} \geq 0$; expand the left-hand side and rearrange.

Another: Let $x_{1}=A B$ and $x_{2}=B C$, with B between A and C. Bisect $A C$ at O, and describe a semicircle on $A C$ as a diameter. Erect $B P$ perpendicular to $A C$, intersecting the semicircle at P.

Then OP $=\frac{1}{2}\left(x_{1}+x_{2}\right)$ and BP $=$ $\sqrt{x_{1} x_{2}}$. (Why?) If $x_{1}=x_{2}$, then B and O coincide and $O P=B P$. If $x_{1} \neq x_{2}$, then OPB is a right triangle, and its hypotenuse is its longest side, that is, $O P>B P$.

Alas, these methods do not generalize to $n>2$. For the general case, see Dijkstra's graceful presentation of a well-known proof: http://www.cs.utexas. edu/users/EWD/ewd11xx/EWD1140.PDF. My favourite by far, and the one we looked at on Monday. (It can be considered an induction on the number of the x_{i} which differ from the average of the x_{i}.)

This inequality is often handy when you're trying to maximize a product, keeping the sum constant, or, conversely, minimize a sum, keeping the product constant. For example, consider this routine calculus problem: what is the largest possible area of a rectangle whose perimeter is p ?

Let the side lengths be x and y. We wish to maximize $x y$, subject to the constraint $x+y=p / 2$. By the arithmetic-geometric mean inequality,

$$
x y=(\sqrt{x y})^{2} \leq\left(\frac{x+y}{2}\right)^{2}=\left(\frac{p}{4}\right)^{2}
$$

and equality is attained exactly when $x=y$. Thus the maximum possible area is $(p / 4)^{2}$, and it is attained by the square.

Isn't that nicer than using calculus?

Exercise: What is the minimum possible surface area of a rectangular solid whose volume is 1 , and for what solid is that minimum attained?

