1 Implication

We discussed the fact that $p \rightarrow q$ is true whenever p is false. This is a common difficulty when first introduced to symbolic logic.

One way to think of it: It's not so much that $p \rightarrow q$ is right when p is false, it's just that it's not wrong. (Suppose I say, "If it rains today, then I will take my umbrella.". Suppose that then it doesn't rain. I didn't say anything about that situation, so I can't very well be wrong, can I?)

Another: Suppose we decided that $p \rightarrow q$ would be false when p is false. Then the truth table for $p \rightarrow q$ would be the same as for $p \wedge q$ (i.e., "p and q"). But surely they don't mean the same thing. (Are there other options for the truth table? What's wrong with them?)

2 Sums

We discussed Ray's question: finding a closed form for

$$S_n = 1 + x + x^2 + \dots + x^{n-1}$$
.

Adding in the next term, we get

$$S_n + x^n = 1 + x + x^2 + \dots + x^{n-1} + x^n$$

= 1 + x(1 + x + \dots + x^{n-2} + x^{n-1})
= 1 + xS_n.

Now solving for S_n yields

$$S_n = \frac{x^n - 1}{x - 1} ,$$

which is the desired closed form.

This is often a successful approach with sums. One of my books calls it "perturbing the sum". The general plan is: add the next term in the sum, then try to get from the result back to the original sum by another path. Then you have an equation in S_n ; solve for it.

Another example: find a closed form for

$$S_n = 1 \cdot 2 + 2 \cdot 4 + 3 \cdot 8 + \dots + n2^n = \sum_{k=1}^n k2^k$$
.

Adding in the next term, we get

$$S_{n} + (n+1)2^{n+1} = \sum_{k=1}^{n+1} k2^{k} = \sum_{k=0}^{n} (k+1)2^{k+1} = \sum_{k=0}^{n} k2^{k+1} + \sum_{k=0}^{n} 2^{k+1}$$

1

Steven Taschuk · 2007 March 21 · http://www.amotlpaa.org/mathclub/2005-05-09.pdf

Now, in the first sum, the k = 0 term is zero, so we can just drop it and obtain

$$\sum_{k=0}^{n} k2^{k+1} = \sum_{k=1}^{n} k2^{k+1} = 2\sum_{k=1}^{n} k2^{k} = 2S_{n}.$$

The second sum is just a geometric series, which we solved above:

$$\sum_{k=0}^{n} 2^{k+1} = 2 \sum_{k=0}^{n} 2^{k} = 2 \cdot \frac{2^{n+1} - 1}{2 - 1} = 2^{n+2} - 2.$$

Putting it together and solving for S_n yields

$$S_n = (n-1)2^{n+1} + 2$$
.

Exercise: $\sum_{k=0}^{n}F_{n},$ where F_{n} is the nth Fibonacci number. ($F_{0}=0,$ $F_{1}=1,$ $F_{n}=F_{n-1}+F_{n-2}.)$

An example of how this method can fail: let

$$\Box_n = 1 + 4 + 9 + \dots + n^2 = \sum_{k=1}^n k^2$$
.

Following the method, we add in the next term and obtain

$$\Box_n + (n+1)^2 = \sum_{k=1}^{n+1} k^2 = \sum_{k=0}^n (k+1)^2 = \sum_{k=0}^n (k^2 + 2k + 1)$$
$$= \sum_{k=0}^n k^2 + 2\sum_{k=0}^n k + \sum_{k=0}^n 1$$
$$= \Box_n + 2\sum_{k=0}^n k + (n+1).$$

Alas, now the \Box_n terms cancel each other. But from this point we *can* solve for the remaining sum:

$$\sum_{k=0}^{n} k = \frac{1}{2}n(n+1) .$$

So this experience produces an idea for evaluating \Box_n : apply the perturbation method to the sum of the first n cubes, have that sum cancel itself out and leave us with an equation involving only sums of lower powers. Try it.

2

3 Order

We discussed the idea of an ordered field, which (in Shilov's treatment) is a field together with a binary relation \leq satisfying the following axioms for all field elements x, y, and z:

1. $x \leq x$.

- 2. Either $x \le y$ or $y \le x$.
- 3. If $x \le y$ and $y \le x$, then x = y.
- 4. If $x \leq y$ and $y \leq z$, then $x \leq z$.
- 5. If $x \leq y$, then $x + z \leq y + z$.
- 6. If $0 \le x$ and $0 \le y$, then $0 \le xy$.

The first four state that \leq is what they call a *total order*. (A *partial order* is a relation that satisfies 1, 3 and 4, but not necessarily 2. Exercise: show that "divides" is a partial order on \mathbb{Z}^+ .) The fifth and sixth state that \leq is, in a certain sense, compatible with the arithmetic operations of the field.

Evidently \mathbb{R} and its subfields (e.g., \mathbb{Q} , $\mathbb{Q}[\sqrt{5}]$) are ordered fields; the usual "less than or equal to" relation satisfies all the above axioms.

Shilov goes on to define \geq , <, and > in the obvious way, and proves a bunch of elementary results about inequalities. Basically this is to show that these axioms are sufficient to re-create the algebra of inequalities that we all know and love. For example:

Theorem 1 $x \le y$ if and only if $-y \le -x$.

Proof If $x \le y$, then by axiom 5 (with z = -x - y), we have $x - x - y \le y - x - y$, that is, $-y \le -x$. Conversely, if $-y \le -x$, adding x + y to both sides yields $x \le y$.

That is, multiplying an inequality by -1 reverses it. Another example:

Theorem 2 $0 \le x^2$.

Proof By axiom 2, either $0 \le x$ or $x \le 0$. If $0 \le x$, then by axiom 6, we have $0 \le xx = x^2$. If, on the other hand, $x \le 0$, then by the previous theorem, $0 \le -x$, and so, by axiom 6 again, $0 \le (-x)(-x) = (-x)^2 = x^2$.

This relies on the fact that $x^2 = (-x)^2$, which holds in any ring, hence in any field. (Proof?)

Such results lead to more interesting ones. For example, \mathbb{C} is not an ordered field, that is, there is no relation on \mathbb{C} satisfying the given axioms. Proof: Suppose there were. Then we'd have $0 \le i^2 = -1$ by the second theorem above,

and so $1 \le 0$ by the first. But also $0 \le 1^2 = 1$. So, by axiom 3, we have 0 = 1, which is false in \mathbb{C} .

Exercise: Prove that \mathbb{Z}_p is not an ordered field.

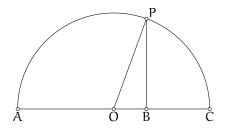
4 Inequality

We looked at the arithmetic-geometric mean inequality, which states that, for any positive reals $x_1, x_2, ..., x_n$,

$$\sqrt[n]{x_1x_2\cdots x_n} \leq \frac{1}{n}(x_1+x_2+\cdots+x_n)$$
,

and equality is attained exactly when all the x_i are equal. The case n = 2, at least, was known in antiquity, and can be proved in a few fairly quick ways. Here's one: note that $(\sqrt{x_1} - \sqrt{x_2})^2 \ge 0$; expand the left-hand side and rearrange.

Another: Let $x_1 = AB$ and $x_2 = BC$, with B between A and C. Bisect AC at O, and describe a semicircle on AC as a diameter. Erect BP perpendicular to AC, intersecting the semicircle at P.



Then $OP = \frac{1}{2}(x_1 + x_2)$ and $BP = \sqrt{x_1x_2}$. (Why?) If $x_1 = x_2$, then B and O coincide and OP = BP. If $x_1 \neq x_2$, then OPB is a right triangle, and its hypotenuse is its longest side, that is, OP > BP.

Alas, these methods do not generalize to n > 2. For the general case, see Dijkstra's graceful presentation of a well-known proof: http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1140.PDF. My favourite by far, and the one we looked at on Monday. (It can be considered an induction on the number of the x_i which differ from the average of the x_i .)

This inequality is often handy when you're trying to maximize a product, keeping the sum constant, or, conversely, minimize a sum, keeping the product constant. For example, consider this routine calculus problem: what is the largest possible area of a rectangle whose perimeter is p?

Let the side lengths be x and y. We wish to maximize xy, subject to the constraint x + y = p/2. By the arithmetic-geometric mean inequality,

$$xy = (\sqrt{xy})^2 \le \left(\frac{x+y}{2}\right)^2 = \left(\frac{p}{4}\right)^2$$
,

and equality is attained exactly when x = y. Thus the maximum possible area is $(p/4)^2$, and it is attained by the square.

Isn't that nicer than using calculus?

Steven Taschuk · 2007 March 21 · http://www.amotlpaa.org/mathclub/2005-05-09.pdf

Exercise: What is the minimum possible surface area of a rectangular solid whose volume is 1, and for what solid is that minimum attained?