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ABSTRACT DEFINITION

1 BILINEAR MAPS. Let X, Y, and Z be vector spaces over some field K. A
map ϕ : X� Y → Z is bilinear if

(i) for all x 2 X, the map Y → Z, y 7→ ϕ(x, y) is linear, and

(ii) for all y 2 Y, the map X→ Z, x 7→ ϕ(x, y) is linear.

The set of bilinear maps from X � Y to Z is a vector space under pointwise
operations; we denote it B(X� Y, Z).

2 EVALUATION OF LINEAR MAPS. Evaluation of linear maps is a bilinear map:

L(Y, Z)� Y → Z

(A,y) 7→ Ay

In a sense, this is the only kind of bilinear map: given a bilinear mapψ : X�Y →
Z, we can define Tψ : X → L(Y, Z) by Tψ(x) = ψ(x, �); one can check that Tψ is
linear and that ψ is Tψ� idY followed by evaluation. (Here Tψ� idY means the
map Tψ � idY(x, y) = (Tψ(x), idY(y)).)

3 CURRYING. If ψ : X � Y → Z is bilinear, then by definition ψ(x, �) : Y → Z

is linear; thus, as in §2, we obtain a map Tψ : X → L(Y, Z), x 7→ ψ(x, �). This
map Tψ is itself linear, and so we obtain a map B(X � Y, Z) → L(X, L(Y, Z)),
ψ 7→ Tψ. This last map is a isomorphism; by symmetry, we have

B(X� Y, Z) ∼= L(X, L(Y, Z)) ∼= L(Y, L(X,Z))

In §9 we will add L(X
 Y, Z) to this list.

4 DEFINITION. Let X and Y be vector spaces over a field K. A tensor product
of X and Y is a vector space Z over K, together with a bilinear map ϕ : X� Y →
Z, satisfying the following universal property: for any vector space V and any
bilinear map ψ : X � Y → V , there exists a unique linear map eψ : Z → V such
that the diagram

X� Y V

Z

//
ψ

��

ϕ

??

eψ

commutes.
Note that if ψ is bilinear and T is linear then T �ψ is bilinear; the definition

of tensor product requires that all bilinear maps out of X � Y arise in this way
from a single bilinear map.

Steven Taschuk � 2013 December 17 � http://www.amotlpaa.org/math/vecten.pdf 1

http://www.amotlpaa.org/math/vecten.pdf


5 EXISTENCE 1. Define

Φ : X� Y → B(X� Y,K)]

(where ] denotes the algebraic dual) by

Φ(x, y)(ψ) = ψ(x, y) .

(So Φ(x, y) is the evaluation functional for (x, y).) Take Z = span RangeΦ and
ϕ : X � Y → Z,ϕ(x, y) = Φ(x, y). One can then show that Z has the desired
universal property. (See Ryan (2002) for details.)

6 EXISTENCE 2. An alternative construction: Let W be the free vector space
on X� Y, that is, the space of formal linear combinations of elements of X� Y.
Impose the desired bilinearity relations as follows: let fW be the subspace ofW
spanned by all elements of the form

λ(x, y) − (λx, y)

λ(x, y) − (x, λy)

(x, y+ y 0) − (x, y) − (x, y 0)

(x+ x 0, y) − (x, y) − (x 0, y)

Then take Z =W/fW and ϕ to be the natural embedding X� Y →W followed
by the quotient mapW → Z. One can then show that Z has the desired univer-
sal property.

7 UNIQUENESS. Suppose Z and Z 0 are tensor products of X and Y, with as-
sociated bilinear maps ϕ and ϕ 0. Factor ϕ 0 through ϕ using the universal
property of Z:

X� Y Z 0

Z

//ϕ 0

��

ϕ

??

eϕ 0

Factor ϕ through ϕ 0 using the universal property of Z 0:

X� Y Z 0

Z

//ϕ 0

��

ϕ

��
eϕ
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Now consider the identity map on Z and the composition eϕ � eϕ 0:

X� Y Z

Z

//ϕ

��

ϕ

??

idZ

X� Y Z

Z Z 0

//ϕ

��

ϕ

��

ϕ 0

//eϕ 0

OO

eϕ

Both idZ and eϕ � eϕ 0 factor ϕ through ϕ as in the universal property of Z; by
the uniqueness part of the universal property,

idZ = eϕ � eϕ 0 .

Similarly, idZ 0 = eϕ 0� eϕ, and so Z ∼= Z 0 (and in fact, the isomorphism is “canoni-
cal”, meaning that it is given by the maps produced by the universal property).
Thus there is essentially only one tensor product.

8 NOTATION. We write X 
 Y for “the” tensor product of vector spaces X
and Y, and we write x
 y for ϕ(x, y).

9 LINEARIZATION OF BILINEAR MAPS. Given a bilinear map X � Y → V , the
universal property of the tensor product yields a unique map X
 Y → V ; thus
we have a map B(X� Y, V) → L(X
 Y, V), which in fact gives an isomorphism

B(X� Y, V) ∼= L(X
 Y, V) .

One case of special interest is

(X
 Y)] = L(X
 Y,K) ∼= B(X� Y,K) ,

and so (X
Y)]] ∼= B(X�Y,K)]. (This observation makes Ryan’s construction §5
quite natural; it’s analogous to embedding a Banach space in its double dual.)

CONCRETE REPRESENTATION OF ELEMENTS

10 ELEMENTARY TENSORS. Elements of a tensor product X 
 Y having the
form x 
 y are called elementary tensors. They span X 
 Y. (Indeed, the fac-
torization condition in the universal property only determines the value of eψ
on the span of the elementary tensors; since eψ is uniquely determined, this
span must be all there is.) So every element of X
 Y is a linear combination of
elementary tensors. In fact, since

n∑
i=1

λi(xi 
 yi) =

n∑
i=1

(λixi)
 yi ,

every element of X
 Y is a sum of elementary tensors.
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DIGRESSION

Before continuing with the theory of writing tensors as sums of elementary
tensors, we need to develop a few fundamental tools. The proofs here also
serve as examples of the universal property in use.

11 TENSORING WITH THE FIELD. K
 X ∼= X.

Proof Factor the scalar multiplication map through the tensor product, ob-
taining a linear mapM : K
 X→ X such thatM(λ
 x) = λx.

K� X X

K
 X

//scal.

mul.

��

ϕ

??

M

Define N : X→ K
 X by N(x) = 1
 x. Note that N is linear. Furthermore,

MN(x) =M(1
 x) = 1x = x ,

soMN = idX, and

NM(λ
 x) = N(λx) = 1
 (λx) = λ
 x ,

and so NM = idK
X (on elementary tensors, which is enough because both
sides are linear and the elementary tensors span; see §10). �

12 TENSORING LINEAR MAPS. Let S : U → V and T : W → X be linear maps.
Then there is a unique linear map S
 T : U
W → V 
 X such that

S
 T(u
w) = Su
 Tw

for all u 2 U and w 2W.

Proof Such a map is unique if it exists because we have specified its values
on elementary tensors, and they span (§10). For existence, factor ϕV,X � (S� T)
through ϕU,W :

U�W V � X

U
W V 
 X

//
S�T

$$��

ϕU,W

��

ϕV,X

//
S
T

(Here S � T is the map S � T(u,w) = (Su, Tw). Note that it’s not linear; but
ϕV,X � (S� T) is bilinear.) �
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13 AMBIGUITY 1. Note that “S
T” here means an element of L(U
W,V
X). It
is also the name of an elementary tensor in L(U,V)
L(W,X). We will partially
fix this ambiguity in §39.

14 COMPOSITION OF LINEAR MAPS. S1T1
S2T2 = (S1
S2)(T1
T2). (Indeed,
both are linear and have the same effect on elementary tensors.)

CONCRETE REPRESENTATION OF ELEMENTS, CONTINUED

15 LINEAR INDEPENDENCE 1. If (yi)n1 are linearly independent and
∑n
i=1 xi


yi = 0, then all xi = 0. (Compare to the analogous statement with scalar
multiplication in place of “
”.)

Proof Let ψ 2 X]. Define Ψ : X
 Y → Y by Ψ(x
 y) = ψ(x)y. (This is ψ
 idY
as in §12 followed by the identification K
 Y ∼= Y as in §11.) We have

0 = Ψ(0) = Ψ
� n∑
i=1

xi 
 yi

�
=

n∑
i=1

Ψ(xi 
 yi) =

n∑
i=1

ψ(xi)yi .

Since the yi are linearly independent, this implies ψ(xi) = 0 for all i. Since ψ
was arbitrary, all xi = 0. �

16 LINEAR INDEPENDENCE 2. If (yi)n1 are linearly independent and
∑n
i=1 xi


yi =
∑n
i=1 x

0
i 
 yi, then xi = x 0i for all i. (Again, compare to the analogous

statement with scalar multiplication in place of “
”.)

17 LINEAR INDEPENDENCE 3. If (xα)α are linearly independent and (yβ)β are
linearly independent then (xα
yβ)α,β are linearly independent. (The proof is
direct, once the observation that∑

α

∑
β

λα,βxα 
 yβ =
∑
α

�∑
β

λα,βxα

�

 yβ

is made.)

18 SPANNING SETS. If (xα)α spans X and (yβ)β spans Y then (xα 
 yβ)α,β
spans X
 Y.

19 BASES. If (xα)α is a basis for X and (yβ)β is a basis for Y then (xα 
 yβ)α,β
is a basis for X
 Y.
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20 DIMENSION. dim(X
 Y) = dim(X)dim(Y).

21 NO ZERO DIVISORS. x
y = 0 if and only if either x = 0 or y = 0. (Consider
the dimensions of the spaces spanned by x, by y, and by x
 y.)

22 SHORTEST REPRESENTATIONS 1. If
∑n
i=1 xi
yi is a shortest representation

of its value as a sum of elementary tensors, then (xi)
n
1 are linearly independent

and (yi)
n
1 are linearly independent.

Proof By contraposition: if, say, the xi have a dependency relation, then one
of them can be expressed in terms of the others, which allows us to construct a
shorter representation. �

(Compare the proof that all bases of a vector space have the same number of
elements.)

23 SHORTEST REPRESENTATIONS 2. All representations of a tensor as a sum of
elementary tensors with linearly independent factors have the same number
of terms (which is called the rank of the tensor). More explicitly: if (xi)

m
i=1

are linearly independent, and (yi)
m
i=1 are linearly independent, and (uj)

n
j=1 are

linearly independent, and (vj)
n
j=1 are linearly independent, and

∑m
i=1 xi
yi =∑n

j=1 uj 
 vj, thenm = n.

Proof Let (x]i)
m
1 be coordinate functionals for the xi. Applying x]i
 id to both

sides of the hypothesized equality yields

yi =

n∑
j=1

x
]
i(uj)vj .

(We’ve identified K 
 Y with Y again.) Therefore yi 2 span(vj)n1 . Since this
is true for all i, and the yi are linearly independent, this yields m � n; by
symmetry,m = n. �

ALGEBRAIC FACTS

We have seen (§11) that the underlying field is the identity for tensor product
of vector spaces, that is,K
X ∼= X (with correspondence given by λ
x↔ λx).
Here are some more algebraic facts.

24 COMMUTATIVITY. X
 Y ∼= Y 
 X, with correspondence x
 y↔ y
 x.
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25 ASSOCIATIVITY. (X
 Y)
 Z ∼= X
 (Y 
 Z)

26 DISTRIBUTIVITY. X
 (Y � Z) ∼= (X
 Y)� (X
 Z)

27 INCLUSION. If X ↪→ X 0 then X
Y ↪→ X 0
Y, and the embedding sends x
y
to x
 y, that is, ϕ(x, y) to ϕ 0(x, y), where ϕ : X� Y → X
 Y and ϕ 0 : X 0 � Y →
X 0 
 Y are the canonical bilinear maps.

Proof Since i : X ↪→ X 0 is injective, it has a left inverse, say j : X 0 → X. Then
(j
 idY)(i
 idY) = idX
 idY (see §14), so i
 idY has a left inverse, so it too is
injective. �

28 QUOTIENTS. If X is a subspace of X 0 then (X 0/X)
 Y ∼= (X 0 
 Y)/(X
 Y).

Proof Let Q : X 0 → X 0/X be the quotient map. Then Q 
 idY : X 0 
 Y →
(X 0/X)
Y is surjective (because it has a right inverse; analogous to §27). Let z 2
X 0 
 Y, say, with shortest representation z =

∑n
i=1 xi 
 yi. Then

z 2 ker(Q
 idY) ⇐⇒ Q
 idY(z) = 0

⇐⇒ n∑
i=1

Qxi 
 yi = 0

⇐⇒ (8i : Qxi = 0)⇐⇒ (8i : xi 2 kerQ)⇐⇒ (8i : xi 2 X)

Therefore ker(Q
 idY) = X
 Y. The desired result follows by the first isomor-
phism theorem. �

(Unpacking this proof yields that the correspondence is (a + X) 
 y ↔
a 
 y + X 
 Y. In other words, [a] 
 y ↔ [a 
 y], where [a] represents the
equivalence class of a in X 0/X and [a
y] represents the equivalence class of a

y in (X 0 
 Y)/(X 
 Y). In short, tensor product (of elements) commutes with
taking the equivalence class.)

FUNCTION SPACES AND LINEAR OPERATORS

29 NOTATION. Let Ω be a set and X a vector space. We write F(Ω,X) for the
vector space of functionsΩ→ X under pointwise operations.
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30 TENSORING A FUNCTION SPACE. F(Ω,X)
 Y ↪→ F(Ω,X
 Y).

Proof Define Φ : F(Ω,X) � Y → F(Ω,X 
 Y) by Φ(f, y)(ω) = f(ω) 
 y.
Then Φ is bilinear, so we get a linear map eΦ : F(Ω,X) 
 Y → F(Ω,X 
 Y)

such that eΦ(f 
 y) = Φ(f, y). We wish to show eΦ is injective; we will show
it has trivial kernel. Let F 2 F(Ω,X) 
 Y be such that eΦ(F) = 0. Let F =∑n
i=1 fi 
 yi be a shortest representation of F as a sum of elementary tensors.

Then
∑n
i=1Φ(fi, yi) = 0, that is,

∑n
i=1 fi(ω) 
 yi = 0 for all ω 2 Ω. Since

the yi are linearly independent, this yields that fi(ω) = 0 for all i and all ω,
which yields F = 0. �

So we can think of f 
 y 2 F(Ω,X) 
 Y as a function Ω → X 
 Y, via (f 


y)(ω) = f(ω)
 y.

31 NONSURJECTIVITY. eΦ is usually not surjective: its image consists of those
F : Ω → X 
 Y such that there exists a finite-dimensional subspace Y 0 of Y
and Range F � X 
 Y 0. But eΦ is surjective if Ω is a finite set or Y is finite-
dimensional.

32 FUNCTIONS OF FINITE SUPPORT. Let Ffin(Ω,X) denote the space of func-
tionsΩ→ X having finite support. Then Ffin(Ω,X)
 Y ∼= Ffin(Ω,X
 Y).

33 CARTESIAN PRODUCT OF DOMAINS. Ffin(Ω,K)
Ffin(Ω
0,K) ∼= Ffin(Ω,K


Ffin(Ω
0,K)) ∼= Ffin(Ω,Ffin(Ω

0,K)) ∼= Ffin(Ω�Ω 0,K)

34 FINITE-DIMENSIONAL VECTOR SPACES. K
m 
Kn ∼= Kmn ∼=Mm�n(K).

35 POWER OF VECTOR SPACES. K
n 
 X ∼= Xn, because Kn = F({1, . . . , n},K)

and Xn = F({1, . . . , n}, X). (Or use Kn 
 X = (K� � � � �K)
 X and §26.)

36 FIELD-VALUED VS VECTOR-VALUED. F(Ω,K)
 X ↪→ F(Ω,X).

37 LINEAR MAPS 1. L(X, Y) 
 Z ↪→ L(X, Y 
 Z), because L(X, Y) = F(B, Y),
where B is a basis for X. (We have isomorphism here if X is finite-dimensional
or Z is.)

38 LINEAR MAPS 2. X] 
 Y ↪→ L(X, Y), since X] = L(X,K). The correspondence
is given by x] 
 y(x) = hx, x]iy; the matrix representation of such maps is

2
4 y

3
5 � x]

�
,

that is, (x]jyi)i,j. The image of this embedding is the finite-rank operators.
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39 AMBIGUITY 2. Using the inclusions above we obtain

L(U,V)
 L(W,X) ↪→ L(U,V 
 L(W,X))

↪→ L(U, L(W,V 
 X))

∼= B(U�W,V 
 X)

∼= L(U
W,V 
 X)

The resulting inclusion sends the elementary tensor S
T to the (unique) linear
map U 
W → V 
 X that sends u 
 w to Su 
 Tw; we called this map S 

T before (see §12, §13), so the ambiguity is somewhat acceptable. (It is very
acceptable in cases when we have isomorphism, that is, when U and W are
finite-dimensional, or U and V are finite-dimensional, or W and X are finite-
dimensional.)

40 DUALITY. X] 
 Y] ↪→ (X 
 Y)], with isomorphism when X is finite-dimen-
sional or Y is. Identifying tensors with their images here yields the rule

hx
 y, f
 gi = hx, fihy, gi .

(On the right we should strictly speaking have hx, fi 
 hy, gi, but the space
is K
K, which we identify with K.)
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