
Thales’ theorem and completing the square

The identity
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can be verified by factoring the right-hand side as a difference of squares, then
simplifying the factors, or by expanding the left-hand side and completing the
square.

These manipulations rely essentially only on the commutativity of multi-
plication and its distributivity over addition. Real inner products are also com-
mutative, and distribute over (vector) addition, so the same manipulations es-
tablish the identity
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(where h�, �i is a real inner product and k � k is the norm it induces), from which
it immediately follows that
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The left-hand side of this equivalence states that the lines joining point ~x to
points ~p and ~q are orthogonal. The right-hand side states that ~x lies on a sphere
centred at 1

2
(~p + ~q) and of radius k1

2
(~p − ~q)k, which is exactly the sphere with

the line segment joining ~p and ~q as a diameter.
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This equivalence, in other words, tells us that, given points P and Q, the locus
of points X for which \PXQ = 90� is the sphere with PQ as diameter. It is
Thales’ theorem (plus converse) for any real inner product space.
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