
Notes for seminar on volume ratio

These are notes for a few seminar talks on volume ratio and related notions
delivered in fall 2009 and winter 2010.
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1 Introduction

The volume ratio of a convex body K in Rn is Nov 23

vr(K) = inf

{�
vol(K)
vol(E)

�1/n
: E is an ellipsoid and E � K

}
.

It is easy to see that this quantity is affine invariant, meaning that for any in-
vertible affine map T we have vr(TK) = vr(K). Thus

vr(K) = vr(KJohn) =

�
vol(KJohn)

vol(Bn2 )

�1/n
,

where KJohn denotes an affine image of Kwhich has Bn2 as its maximum volume
ellipsoid, as in John’s theorem.

In fact, slightly more is true than affine invariance: we have

vr(K) � d̃(K, L)vr(L) . (1)

Here d̃ is one of the two natural generalizations of Banach–Mazur distance to
convex bodies that are not necessarily symmetric. The usual one is

d(K, L) = inf {λ : λ > 0 and SL � TK � λSL for some invertible affine S, T } ,

but if we wish to allow the “inner” and “outer” L to be negative homothets,
we use instead

d̃(K, L) = inf {|λ| : SL � TK � λSL for some invertible affine S, T } .

Clearly d̃(K, L) � d(K, L); we have equality if one (or both) of K and L is sym-
metric.1

To prove (1), consider any ellipsoid E, any invertible affine maps S, T , and
any real number λ such that

E � SL � TK � λSL .

Then

vr(K) = vr(TK) �
�

vol(TK)
vol(E)

�1/n
�
�

vol(λSL)
vol(E)

�1/n
= |λ|

�
vol(SL)
vol(E)

�1/n
.

1As Sasha pointed out, this statement is slightly trickier than it appears. We’d like to say that
if L � K � −λL (where λ > 0) and L is symmetric, then we can just replace −λL by λL. But
this argument assumes the centre of homothety (i.e., the origin wrt which we scale L to −λL) is
the same as the centre of symmetry (i.e., the origin for which L = −L), and this is not part of the
hypothesis. So we need to be a little more careful. But the idea is easy: if L is symmetric, then
any negative homothet of L is also a positive homothet (with the same absolute ratio, but with a
different centre), so if K can be sandwiched between L and a negative homothet of some ratio then
ipso facto it can be sandwiched between L and a positive homothet of the same ratio.
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Taking the infimum over all E such that E � SL yields

vr(K) � |λ|vr(SL) = |λ|vr(L) ,

and then taking the infimum over S, T, λ yields the desired result.
An immediate corollary is that

vr(K) � d̃(K,Bn2 )vr(Bn2 ) = d̃(K,B
n
2 ) � d(K,Bn2 ) .

From John’s theorem we have well-known upper bounds on d(K,Bn2 ), yielding

vr(K) �
{p

n if K is symmetric,

n in general.
(2)

This estimate for symmetricK is pretty good (as we will see, it’s the right order),
but the estimate for the general case is quite bad2; the correct upper bound is
again c

p
n.

2 Ball’s precise upper bounds on volume ratio

Ball’s Theorem3 For any convex body K in Rn,

vol(KJohn) �
{

vol(Bn∞) if K is symmetric,

vol(4n) in general.

Here 4n denotes the regular simplex in John’s position; it turns out that

vol(4n) = nn/2(n+ 1)(n+1)/2

n!
∼ cen . (3)

(The asymptotic statement follows by Stirling’s approximation.)
A corollary of Ball’s theorem is that the cube Bn∞ has the highest volume

ratio of all symmetric convex bodies, and the simplex 4n has the highest vol-
ume ratio in general. (Another corollary is the reverse isoperimetric inequality;
see [4].)

To prove Ball’s theorem we need a few facts about John’s position.

John’s Theorem4 Every convex body K in Rn contains a unique ellipsoid of
maximum volume. That ellipsoid is Bn2 if and only if Bn2 � K and there exist
contact points (ui)m1 � bdK \ bdBn2 and positive weights (ci)m1 such that

2As Sasha mentioned, we can get the right order by comparing K to K \ −K: as shown by
Stein [17], for any K there exists a choice of origin so that vol(K \ −K) � 1

2n
vol(K), and it easily

follows that vr(K) � 2 vr(K \ −K) � 2pn.
3The symmetric case appeared first in [1], and the general case in [2]. A complete treatment also

appears in [4].
4The original paper of John [10] can be somewhat difficult to obtain through the usual methods;

I have a copy if anyone is interested. Other proofs can be found in [3] and [8].
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(i)
∑
ciui 
 ui = Id, and

(ii)
∑
ciui = 0.

In condition (i), which is called John’s decomposition of the identity, x 
 y
denotes the map Rn → R given by

x
 y(t) = hx, tiy .

This map is linear and has matrix yxT (taking x, y to be column vectors); note
that tr(x 
 y) = hx, yi. Unpacking the definitions in condition (i) yields the
equivalent statement

8x 2 Rn :
∑

cihui, xiui = x .

Taking the inner product with x on both sides yields

8x 2 Rn :
∑

cihui, xi2 = |x|2 . (4)

(In fact this statement is equivalent to condition (i).) This is one respect (among
many) in which the vectors ui behave somewhat like an orthonormal basis.

Since |ui| = 1, we have tr(ui 
 ui) = 1, so taking traces in condition (i)
yields ∑

ci = n . (5)

Also since |ui| = 1, the map ui
ui is the orthogonal projection onto span {ui}.
Since −ui has the same span, the map (−ui)
 (−ui) is the same projection. If
K is symmetric5, then −ui 2 bdK \ bdBn2 , that is, −ui is also a contact point;
thus replacing ciui 
 ui with

ci

2
ui 
 ui + ci

2
(−ui)
 (−ui)

preserves condition (i) and makes condition (ii) automatic. Thus if K is sym-
metric then we can ignore condition (ii), or assume it freely, as we wish.

Since ui 2 bdK, K has a supporting halfspace at ui. Since ui 2 bdBn2 and
Bn2 � K, this halfspace also supports Bn2 at ui; but Bn2 only has one supporting
halfspace at ui, and it is {x : hui, xi � 1}. Thus, defining

eK = {x : (8i : hui, xi � 1)} , (6)

we have K � eK. When K is symmetric, we will instead define

eK = {x : (8i : |hui, xi| � 1)} , (7)
5An important detail: if K is symmetric then its maximum volume ellipsoid has the same centre

of symmetry. Indeed, if K = −K and E � K, then −E � K, and so conv(E[−E) � K; if E 6= −E then
one can show that E can be stretched (in the direction joining the centres of E and −E) to obtain an
ellipsoid of larger volume in K. Thus if K is symmetric then KJohn = −KJohn.
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taking advantage again of the fact that in this case, ui and −ui are both contact
points.

The second major tool for Ball’s theorem is the following inequality.

Normalized Brascamp–Lieb Inequality6 If (ui)m1 are unit vectors and (ci)
m
1

are positive real numbers such that
∑
ciui 
 ui = Id, then for any measurable

nonnegative functions (fi)m1 ,∫
Rn

∏
fi(hui, xi)ci dx �

∏�∫
R

fi(t)dt

�ci
.

This is another example of how the ui behave somewhat like an orthonor-
mal basis; indeed, if the ui are an orthonormal basis then (taking all ci = 1) we
have equality.

Now we can prove Ball’s theorem. The symmetric case is quick: let K = −K,
let K be in John’s position, with (ci) and (ui) as in John’s theorem, and eK as
in (7). Then

vol(K) � vol(eK) = ∫
Rn

[x 2 eK]dx = ∫
Rn

∏
[|hui, xi| � 1]ci dx

�
∏�∫

R

[|t| � 1]dt
�ci

=
∏

2ci = 2
∑
ci = 2n = vol(Bn∞) ,

making use of (5), the fact that Bn∞ = [−1, 1]n, and the Iverson bracket notation,
whereby

[P] =

{
1 if P is true,

0 if P is false.

If we try to repeat this proof in the general case, with eK defined by (6) in-
stead of (7), we have [hui, xi � 1] instead of [|hui, xi| � 1], and at the end we
are confronted with an integral over (−∞, 1] instead of over [−1, 1]. To remedy
this, we introduce a weight function w(t); we wish to end up with

∏�∫
R

[t � 1]w(t)dt
�ci

,

where w(t) will be chosen as some function that decays to zero (as t → −∞)
fast enough that this integral is finite. In the previous step, then, we should
have ∫

Rn

∏
[hui, xi � 1]ciw(hui, xi)ci dx .

6This name and formulation are due to Ball [1]; the original version of Brascamp and Lieb is
in [7]. Barthe ([5], [6]) gives a fairly simple proof of the inequality in this formulation, which is
repeated in [4].
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In order to introduce these weights at this point, we desire that∏
w(hui, xi)ci = 1 ,

or equivalently, taking logs,∑
ci lnw(hui, xi) = 0 .

Since
∑
ciui = 0, it is easy to see that we will obtain this condition by taking

w(t) = et. Carrying out this plan yields

vol(K) � en ,

which as we see from (3) is asymptotically sharp.
The precise upper bound obtained by Ball requires another idea, which is

motivated by the observation that the nicest way to present an n-dimensional
simplex is as the convex hull of the n + 1 standard basis vectors in Rn+1, or
equivalently, as a section of the positive orthant of Rn+1. Likewise, we will
replace our body eK with a cone in Rn+1: the contact points whose polar is eK
will be replaced by a set of normal vectors for the cone; we will construct these
normal vectors so that they give a decomposition of the identity in Rn+1, and
apply the normalized Brascamp–Lieb inequality. (We will also use the idea of
introducing an exponential weight to each factor.)

So, define weights (di)m1 and unit vectors (vi)m1 in Rn+1 by Nov 30

di =
n+ 1

n
ci and vi =

1p
n+ 1

� p
nui
−1

�
2 Rn � R = R

n+1 .

As desired, these vectors, with these weights, give a decomposition of the iden-
tity as in John’s theorem:

∑
diviv

T
i =
∑ n+ 1

n
ci � 1

n+ 1

� p
nui
−1

� � p
nuTi −1

�
=
∑ ci

n

"
nuiu

T
i

p
nuip

nuTi 1

#
=

�
In 0

0T 1

�
= In+1 .

They do not give a balanced configuration, since

∑
divi =

∑ n+ 1

n
ci � 1p

n+ 1

� p
nui
−1

�
=

�
0

−
p
n+ 1

�
.

Define the cone
C = {y 2 Rn+1 : (8i : hvi, yi � 0)} .
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For y = (x, r) 2 Rn � R, we have

y 2 C ⇐⇒ (8i : hvi, yi � 0)⇐⇒ (8i : hpnui, xi− r � 0)⇐⇒ (8i : hui, xi � rp
n
)

⇐⇒ r � 0 and x 2 rp
n
eK

(The condition r � 0 is obtained because
∑
ciui = 0, and so the values hui, xi

cannot all be negative.)
By the normalized Brascamp–Lieb inequality,∫

Rn+1

∏
[hvi, yi � 0] edihvi,yi dy �

∏�∫
R

[t � 0] et dt
�di

= 1 .

On the other hand,∫
Rn+1

∏
[hvi, yi � 0] edihvi,yi dy

=

∫
Rn+1

[y 2 C] eh
∑
divi,yi dy

=

∫∞
0

∫
Rn

[x 2 rp
n
eK] e−rpn+1 dxdr

=

∫∞
0

�
rp
n

�n
e−r

p
n+1 drvol(eK)

=

∫∞
0

 
tp

n(n+ 1)

!n
e−t

1p
n+ 1

dtvol(eK) (t = r
p
n+ 1)

=
n!

nn/2(n+ 1)(n+1)/2
vol(eK) .

Therefore

vol(eK) � nn/2(n+ 1)(n+1)/2

n!
= vol(4n) ,

as desired.

3 Low volume ratio yields somewhat Euclidean sections

My treatment of this topic follows [15], chapter 6.7

7Nicole explained the history: in 1977, Kašin [12] (whose name is rendered “Kashin” in some
transliteration systems) showed, for K = Bn1 , that there exists a decomposition Rn = F� F? of the
type described in corollary 7; in 1978, Szarek [18] gave a different proof, using the method shown
here, but did not explicitly isolate the notion of volume ratio; Szarek and Tomczak-Jaegermann [19]
did that in 1980, and stated explicitly the result which I here call “Szarek’s theorem”. Perhaps it
should be called the Kašin–Szarek theorem, or the Szarek–Tomczak theorem.
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Szarek’s Theorem Let K be a convex body in Rn with Bn2 � K and�
vol(K)

vol(Bn2 )

�1/n
� A .

Then, with high probability, a random k-dimensional subspace F satisfies

8x 2 F : kxkK � |x| � (4πA)n/(n−k)kxkK .

Here F is random in the sense of the uniform (i.e., rotationally invariant) proba-
bility measure on the Grassmannian Gn,k, and the statement holds with prob-
ability at least 1− 1

2n
.

The inequality kxkK � |x| is immediate from the hypothesis that Bn2 � K, so
we need only prove the second inequality. Furthermore, by homogeneity it is
enough to consider x 2 Sn−1 \ F. The plan of the proof is:

(A) Since the volume of K is small, its radial function is small (i.e., k � kK is
large) at an average point of Sn−1.

(B) Thus the norm is large at an average point of an average section of Sn−1.

(C) Thus the norm is large at most points of most sections of Sn−1.

(D) Thus the norm is large at all points of most sections of Sn−1.

We need several lemmas, of whose proofs I will say very little.

Lemma 1 If f : Rn → R is measurable and nonnegative, then∫
Rn

f(x)dx =

∫
Sn−1

∫∞
0

f(rθ)rn−1 drdθ

= nvol(Bn2 )
∫
Sn−1

∫∞
0

f(rθ)rn−1 drdσ(θ)

where in the first line, dθ indicates Lebesgue measure on Sn−1, and in the
second, σ is the uniform (i.e., rotationally invariant) probability measure on
Sn−1. (The factor nvol(Bn2 ) = voln−1(Sn−1) is the normalizing factor.)

Lemma 2 For a starshaped body K in Rn,

vol(K) = vol(Bn2 )
∫
Sn−1

1

kθknK
dσ(θ) .

Proof Apply lemma 1 to the characteristic function of K. �
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Lemma 2 expresses the volume of K as a kind of average of its norm, which
is what we need for part (A).

Lemma 3 For a nonnegative measurable function f : Sn−1 → R,∫
Sn−1

f(θ)dσ(θ) =

∫
Gn,k

∫
Sn−1\F

f(θ)dσF(θ)dµ(F) ,

where σ is the uniform probability measure on Sn−1, σF is the uniform proba-
bility measure on Sn−1 \ F, and µ is the uniform probability measure on Gn,k,
the Grassmannian of k-dimensional subspaces of Rn.

Proof Define bσ(A) = ∫
Gn,k

σF(A \ F)dµ(F), and show that bσ is a rotationally
invariant probability measure on Sn−1, whence bσ = σ. (The integral on the
RHS is the integral wrt bσ.) �

Lemma 3 expresses the intuitively obvious equivalence between the notions
of “average point on Sn−1” and “average point on average section of Sn−1”, as
we need for part (B).

Part (C) needs no lemmas, as to pass from average behaviour to behaviour
in most places we need merely invoke Markov’s inequality.

Lemma 4 For any x0 2 Sn−1 and any δ 2 [0,
p
2],

σ(x 2 Sn−1 : |x− x0| � δ) �
�
δ

π

�n
.

(See section 9 for a variant of this lemma.)
In part (D) we wish to deduce the norm is large everywhere on the sphere,

knowing only that the norm is large for most points, in the sense that the set of
points where the norm is small has small measure. We will deduce that the set
of points where the norm is small is small in terms of the metric (which is the
role of lemma 4), and then use a Lipschitz condition to deduce that the function
cannot be very small anywhere. This argument is encapsulated in the next and
final lemma.

Lemma 5 Let f : Sn−1 → R be Lipschitz and let t 2 [0, (
p
2/π)n]. If σ(f � r) <

t then, for every θ 2 Sn−1, f(θ) > r− πt1/n.

Proof Let δ = πt1/n 2 [0,
p
2]. The hypothesis and lemma 4 show that {f � r}

contains no cap of radius δ. Thus every point θ 2 Sn−1 is within δ of a point ψ
where f(ψ) > r, and so f(θ) � f(ψ) − δ > r− πt1/n. �

Now we can prove Szarek’s theorem. Let K be as described therein. Then Dec 11
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An � vol(K)
vol(Bn2 )

(hypothesis)

=

∫
Sn−1

1

kθknK
dσ(θ) (lemma 2; part (A))

=

∫
Gn,k

∫
Sn−1\F

1

kθknK
dσF(θ)dµ(F) (lemma 3; part (B))

LetΩ0 = {F 2 Gn,k :
∫
Sn−1\F

1
kθkn

K
dσF(θ) < (2A)n}. By Markov’s inequality,

µ(Ω0) = 1− µ(Ω0) � 1− 1

(2A)n

∫
Gn,k

∫
Sn−1\F

1

kθknK
dσF(θ)dµ(F) � 1− 1

2n
.

(Ω0 is the set of “most sections” described in part (C).) Let F 2 Ω0. Then, for
r > 0 to be chosen later, we have (by Markov’s inequality again)

σF(θ : kθkK � r) = σF(θ : 1
kθkn

K
� 1
rn

)

� rn
∫
Sn−1\F

1

kθknK
dσF(θ)

� (2Ar)n

(That completes part (C).) As previously noted, since Bn2 � K we have k � kK �
| � |, and so ��kxkK − kykK

�� � kx− ykK ∨ ky− xkK � |x− y| ,

that is, k � kK is Lipschitz. (Note that since K is not assumed symmetric, we
cannot use the usual “other” triangle inequality

��kxk − kyk�� � kx − yk here.)
So by lemma 5,

8θ 2 Sn−1 \ F : kθkK � r− π(2Ar)n/k ,

provided that r is later chosen so that

(2Ar)n �
�p

2

π

�k
. (8)

(Note that we apply lemma 5 to Sn−1 \ F, which is essentially Sk−1, not to
Sn−1.) Finally, we choose r so that our estimate r − π(2Ar)n/k is positive. The
simplest way is to make the second term half of the first, that is,

π(2Ar)n/k =
r

2
.

Thus we will take � r
2

�n−k
=

1

πk(4A)n
.
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To check that this value of r satisfies (8), note first that (2Ar)n =
�
r
2π

�k, so it

suffices to check that r
2
� p

2; and indeed,
�
r
2

�n−k
= 1
πk(4A)n

� 1, so in fact
r
2
� 1 � p

2. Thus we obtain the estimate

kθkK � r

2
� 1

(4πA)n/(n−k)
=

1

(4πA)n/(n−k)
|θ| .

The homogeneity of the norm yields the desired statement, completing the
proof of Szarek’s theorem.

4 Digression: Convex bodies are spiky

A key maneuver in the proof of Szarek’s theorem is to apply Markov’s inequal-
ity to the formula expressing volume as a kind of average of radius (lemma 2).
Writing this idea down separately, we have:

Proposition 6 If K is a star-shaped body in Rn, then

σ(Sn−1 \ rK) � vol(rK)
vol(Bn2 )

.

Proof

σ(Sn−1 \ rK) = σ(Sn−1 \ |r|K)

= σ(θ 2 Sn−1 : kθkK � |r|) = σ(θ 2 Sn−1 : 1
kθkn

K
� 1

|r|n
)

� |r|n
∫
Sn−1

1

kθknK
dσ(θ) = |r|n

vol(K)
vol(Bn2 )

=
vol(rK)
vol(Bn2 )

�

Since σ is a probability measure, this upper bound is trivial when vol(rK) �
vol(Bn2 ), but when r decreases past this point, this upper bound decreases very
rapidly, indeed, like rn. So if K is even a little bit smaller (in volume) than
the Euclidean ball, then it doesn’t stick out very much (in terms of area on the
sphere); however, as we will see when we compute vr(Bn1 ), a convex body with
such volume can stick out quite far (in terms of distance from the origin). This
is one reason that high-dimensional convex bodies should be drawn “spiky”,8

even though this makes the picture nonconvex:

8Peter pointed out that spiky pictures are good for showing measure phenomena, but, as ever,
we should be alert that they do not show metric phenomena well. He also drew my attention to a
brief discussion of exactly this kind of picture in [13], which refers to [9] for a similar exponential
decay of volume, but using slabs instead of balls.
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5 Applications of Szarek’s theorem

Corollary 7 Let n be even, and let K be a convex body in Rn with Bn2 � K and�
vol(K)

vol(Bn2 )

�1/n
� A .

Then there exists a subspace F of dimension n
2

such that

8x 2 F [ F? : kxkK � |x| � (4πA)2kxkK .

Proof Say that a subspace is good if the stated inequality holds for vectors in
that subspace. By Szarek’s theorem, the set of good subspaces F has measure
at least 1− 1

2n
> 1
2

. And since the map F 7→ F? preserves the measure on Gn,k
(indeed, one can check that the measure bµ(A) = µ(F? : F 2 A) is rotationally
invariant, hence equal to µ), the set of subspaces F such that F? is good also has
measure at least 1− 1

2n
> 1
2

. Therefore there exists a subspace F such that both
F and F? are good. �

For example, Bn2 �
p
nBn1 , and we will compute later that Jan 18�

vol(
p
nBn1 )

vol(Bn2 )

�1/n
� c , (9)

where c is some constant (meaning in particular that it does not depend on n).
Thus, for n = 2k, we obtain an orthogonal decomposition Rn = F � F? with
dim F = k and

8x 2 F [ F? : kxkpnBn
1
� |x| � c 0kxkpnBn

1
,
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that is,
8x 2 F [ F? : kxk1 �

p
n |x| � c 0kxk1 .

Another nice way to write this is

8x 2 F [ F? :
1

n
kxk1 � 1p

n
|x| � c 0

n
kxk1 .

This is nice because, writing

|||x|||p =

�
1

n

∑
|xi|

p

�1/p
=

1

n1/p
kxkp ,

it asserts that
8x 2 F [ F? : |||x|||1 � |||x|||2 � c 0|||x|||1 ,

and these norms ||| � |||p are just the usual Lp(µ) norms if we think of vectors
in Rn as functions {1, . . . , n} → R and take µ to be the uniform probability
measure on {1, . . . , n}. This motivates the notation Lnp for these normed spaces
(or for their unit balls).

Corollary 8 Let n be even, and let K be a convex body in Rn with Bn2 � K and�
vol(K)

vol(Bn2 )

�1/n
� A .

Further assume that K = −K. Then there exists a symmetric orthogonal mapQ
such that

8x 2 Rn : 1p
2(4πA)2

|x| � 1

2
(kxkK + kQxkK) � kxkK ∨ kQxkK � |x| .

Proof The second inequality is obvious. The third follows from the facts that
Bn2 � K and Q is (will be) orthogonal.

For the first inequality: let F be as in the previous corollary, let P1 be the
orthogonal projection onto F, let P2 be the orthogonal projection onto F?, and
let Q = P1 − P2. (Q is reflection in F.)

F

F?

xQx

−Qx

P1x

P2x
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We compute, first, that

1

2
(kxkK + kQxkK) � 1

2
kx+QxkK = kP1xkK � 1

(4πA)2
|P1x| .

Using the fact that K = −K, we have, similarly,

1

2
(kxkK + kQxkK) = 1

2
(kxkK + k−QxkK) � 1

(4πA)2
|P2x| .

Thus

1

2
(kxkK + kQxkK) � 1

(4πA)2
(|P2x| ∨ |P1x|) � 1p

2(4πA)2
|x| ,

as desired. �

In terms of unit balls, this corollary asserts that

Bn2 � K \QK � 2(K�QK) �
p
2(4πA)2Bn2 , (10)

where K � L denotes the body whose norm is the sum of the norms of K and
L. (It can be shown that this type of addition is dual to Minkowski addition, in
the sense that (K+ L)� = K� � L�, and that we have the inclusions

K� L � K \ L � 2(K� L) � 1

2
(K+ L) � conv(K [ L) � K+ L .

The third inclusion is tricky, but the others are straightforward. The last one
assumes 0 2 K \ L.)

In lecture 4 of [3], Ball proves a version of (10) directly. The method re-
sembles the one used here, but the direct approach yields several advantages:
the result is proved for all n (not just even n); we obtain a better constant;
the choice of Q is random and with high probability in all of O(n) (instead of
just reflections in n

2
-dimensional subspaces); and we need not assume that K is

symmetric. He also deduces Szarek’s theorem (for even n) from this statement.
The point of these maneuvers is to show that the phenomena described by

Szarek’s theorem (a section of the body is somewhat Euclidean) and (10) (com-
binations of the body and a copy of are somewhat Euclidean) are not merely
parallel but, to some extent, mutually deducible. For more on this idea, but
focussing on Dvoretzky’s theorem, see [14].

The part of (10) that concerns K \ QK is intuitively reasonable from our Jan 25
previous discussion of “spikiness”: since the spikes of K occupy a small area
on the sphere, K and QK are not likely to have spikes in the same directions,
and so intersecting them will cut off the spikes, leaving something close to Bn2 .
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6 Volume ratio of Bnp

As promised earlier, we will now compute the volume of Bnp (following the
method used in [15], page 11), and thereby show how the results of the previ-
ous section apply to such balls.

Lemma 9 If K � Rn is star-shaped and 0 < p <∞, then

vol(K) =
1

Γ(1+ n
p
)

∫
Rn

e−kxk
p

K dx .

Proof∫
Rn

e−kxk
p

K dx =

∫
Rn

∫∞
kxkp

K

e−t dtdx

=

∫ ∫
[kxkpK � t] e−t dtdx

=

∫ ∫
[kxkK � t1/p] e−t dtdx (using p > 0)

=

∫ ∫
[t � 0] [x 2 t1/pK] e−t dtdx (using K star-shaped)

=

∫∞
0

vol(t1/pK)e−t dt

=

∫∞
0

tn/pe−t dtvol(K)

= Γ(1+ n
p
)vol(K)

�

(Lemma 9 appears, with a slightly different proof, as Lemma 7 in [2], but I
doubt this is its origin.9)

Proposition 10 If 0 < p <∞ then

vol(Bnp) =
2nΓ(1+ 1

p
)n

Γ(1+ n
p
)

.

Proof First we compute that∫
Rn

e−kxk
p
p dx =

∫
Rn

e−
∑

|xi|
p

dx =

∫
Rn

∏
e−|xi|

p

dx

=

�∫
R

e−|t|p dt

�n
= 2n

�∫∞
0

e−t
p

dt

�n
,

9Sasha and Nicole suspect this fact has been known for at least a hundred years.
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and then the substitution u = tp yields

= 2n
�
1

p

∫∞
0

u
1
p
−1e−u du

�n
= 2n

�
1

p
Γ

�
1

p

��n
= 2nΓ

�
1+

1

p

�n
,

and the lemma yields the claim. �

This method relies on the rather clever lemma 9; it may be reassuring to
know that the result for Bnp can also be obtained by the more obvious method
of slicing. Indeed, the cross-section of Bnp obtained by fixing one coordinate is
a scaled copy of Bn−1p ; thus

vol(Bnp) =
∫1
−1

vol(scaling factor � Bn−1p )dt ,

which with a little computation leads to

vol(Bnp)

vol(Bn−1p )
=
2

p
B

�
1

p
, 1+

n− 1

p

�
= � � � =

2Γ(1+ 1
p
)Γ(1+ n−1

p
)

Γ(1+ n
p
)

,

where B(s, t) is the beta integral. Induction on n then yields the desired for-
mula.

Examples

1. vol(Bn1 ) =
2n

n! , which can also be obtained by noting thatBn1 consists of 2n

copies (one in each orthant) of a “right-angled simplex”, which is a cone
whose height is 1 and whose base is the analogous (n − 1)-dimensional
body.

2. vol(Bn2 ) =
Γ( 1

2
)n

Γ(1+n
2
) . Since vol(B22) = π, this yields Γ(1

2
) =

p
π. (Indeed, the

method used here to compute vol(Bnp) is a generalization of the classical
method of computing this value.) Thus

vol(Bn2 ) =
πn/2

Γ(1+ n
2
)

.

3. The case p = ∞ is not covered by proposition 10, but if we fix n and let
p↗∞, then by the continuity of measure,

vol
� [
p>0

Bnp

�
= lim
n→∞ vol(Bnp) = 2

n .

Since
intBn∞ �

[
p>0

Bnp � Bn∞ ,

we thus have vol(Bn∞) = 2n. (Of course we already knew this.)10

10Thanks to Niushan for pointing out that my original argument in this example was wrong.
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4. If we fix p and let n→∞, then by Stirling’s approximation,

vol(Bnp) ∼
2nΓ(1+ 1

p
)nq

2πn
p

�
n
pe

�n/p ,

whence

vol(Bnp)
1/n ∼

2Γ(1+ 1
p
)(pe)1/p

n1/p
=

cp

n1/p
.

Thus a natural normalization is n1/pBnp , which is the unit ball of the Lnp
norm mentioned on page 13.

Now, recall the standard fact that for a probability measure µ, if 0 < p �
q �∞ then k � kLp(µ) � k � kLq(µ)). Applying this to the Lnp norms yields

n1/qBnq � n1/pBnp . (11)

(In fact we only care about p � 1, because we want convexity.) So if 1 � p � 2,
then n1/2Bn2 � n1/pBnp , with contact at the vertices of Bn∞. Those vertices
(after scaling) support a decomposition of the identity as in John’s theorem, so
we conclude that n1/2Bn2 is the maximum volume ellipsoid in n1/pBnp . Thus

vr(Bnp) =

 
vol(n1/pBnp)
vol(n1/2Bn2 )

!1/n
∼
Γ(1+ 1

p
)(pe)1/p

Γ(1+ 1
2
)(2e)1/2

if 1 � p � 2,

which establishes the promised result for Bn1 (namely (9), on page 12). Again,
note that the constant on the right does not depend on the dimension. On the
other hand, if 2 � p � ∞, then Bn2 is the maximum volume ellipsoid of Bnp ,
and so

vr(Bnp) =
�

vol(Bnp)
vol(Bn2 )

�1/n
∼
Γ(1+ 1

p
)(pe)1/p

Γ(1+ 1
2
)(2e)1/2

� n
1/2

n1/p
if 2 � p �∞,

which is, alas, an unbounded function of n. Still, if p < ∞, this improves thep
n estimate we obtained from John’s theorem (see (2) on 3).11

7 Summary of parameters

K vol(KJohn) vol(KJohn)
1/n vr(K) d(K,Bn2 )

Bn1 2nnn/2/n! ∼ c/
p
n ∼ c

p
n

Bn2 πn/2/Γ(1+ n
2
) ∼ c/

p
n 1 1

Bn∞ 2n 2 ∼ c/
p
n

p
n

4n nn/2(n+ 1)(n+1)/2/n! ∼ e ∼ c/
p
n n

11As Nicole pointed out, this also gives us an asymptotically sharp lower bound on d(Bnp , B
n
2 ).

Indeed, for the range 2 � p � ∞, we have d(Bnp , B
n
2 ) � vr(Bnp ) ∼ cpn1/2−1/p, and Bn2 � Bnp �

n1/2−1/pBn2 . For the range 1 � p � 2, take duals.
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In this table we can see that, although distance to the Euclidean ball and
volume ratio are related (as in (2)), they may nevertheless be quite different: Bn1
and Bn∞ both have extremal distance (for symmetric bodies) but their volume
ratios are at the opposite ends of the scale.

The table also shows again that asymmetric bodies can be much further
from the ball, but asymmetry does not disturb volume ratio much. (Recall
footnote 2, on page 3.)

8 Loose end: Control by ε-nets

In the proof of Szarek’s theorem, we used the following obvious fact about how
controlling a (nice) function on an ε-net lets us control it on the whole sphere:

Observation Let Λ be an ε-net for Sn−1 and let f : Sn−1 → R be c-Lipschitz.
If α 2 R is such that

8θ 2 Λ : α � f(θ) ,

then
8θ 2 Sn−1 : α− cε � f(θ) .

(This observation, with c = 1, is implicit in the proof of lemma 5.)
When f is a norm (even an asymmetric one), there is a standard, more Feb 1

powerful, proposition along the same lines. We need the following simple ge-
ometric proposition as a lemma.12

Proposition 11 Let K � R
n be closed and convex. Let A � R

n be bounded.
Let 0 � λ < 1. If A � (1− λ)K+ λA, then A � K.

(We would perhaps like to simply subtract λA from both sides (but this is
not possible with Minkowski addition), then factor out the common A on the
left (but this is not possible when A is not convex) and then cancel the (1− λ).)

For intuition, consider the case that A is a singleton. Then (1 − λ)K + λA is
a smaller homothet of K, in centre A:

12Actually, as Sasha pointed out, we can prove proposition 13 more directly and simply (but less
geometrically). Such a proof is given in [3], Lemma 9.2.
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The proposition states that if A is in the smaller copy then we must be in the
situation at right.

Proof We prove the contrapositive. Accordingly, suppose A 6� K. Let x 2
A \ K, and separate x from K by a functional f, so that f(x) > supK f. then

sup
(1−λ)K+λA

f = (1− λ) sup
K

f+ λ sup
A

f < sup
A

f

with strict inequality because λ < 1 and supK f < f(x) � supA f < ∞. There-
fore A 6� (1− λ)K+ λA. �

Corollary 12 If Λ is a ε-net for Sn−1, where 0 � ε < 1, then

cl convΛ � Bn2 �
1

1− ε
cl convΛ .

Proof The hypothesis asserts that

Λ � Sn−1 � Λ+ εBn2 .

Taking closed convex hulls yields (using the facts that conv(A+B) = convA+

convB and, for bounded sets, cl(A+ B) = clA+ clB)

cl convΛ � Bn2 � cl convΛ+ εBn2

= (1− ε)
1

1− ε
cl convΛ+ εBn2

Applying proposition 11 with K,A, λ := 1
1−ε cl convΛ,Bn2 , ε yields the desired

result. �

Proposition 13 Let Λ be an ε-net for Sn−1, where 0 � ε < 1. Let K � Rn be a
convex body with 0 2 intK. If α,β 2 R are such that

8θ 2 Λ : α � kθkK � β ,

then
8θ 2 Sn−1 : α−

ε

1− ε
β � kθkK � 1

1− ε
β .

Proof Since kθkK � β for θ 2 Λ, we have Λ � βK, and so cl convΛ � βK.
By corollary 12, Bn2 � 1

1−εβK, which yields the desired upper estimate. It also
yields that k � kK is 1

1−εβ-Lipschitz, which yields the lower estimate. �

A variant of this proposition is that if

8θ 2 Λ : 1− δ � kθkK � 1+ δ ,

then
8θ 2 Sn−1 : 1− δ− 2ε

1− ε
� kθkK � 1+ δ

1− ε
.

(This version is proven directly as Lemma 9.2 in [3].)

Steven Taschuk � 2011 August 5 � http://www.amotlpaa.org/math/sem200911.pdf 19

http://www.amotlpaa.org/math/sem200911.pdf


9 Loose end: Construction of ε-nets

In the proof of Szarek’s theorem, we used a lower bound on the (relative) mea-
sure of a spherical cap, namely lemma 4, which asserted that

0 � ε �
p
2 =⇒ σ(ε-cap) �

�ε
π

�n
, (12)

where σ is, as usual, the uniform probability measure on Sn−1. As part of
the argument for lemma 5, we deduced that any set smaller than this doesn’t
contain an ε-cap, and so its complement is an ε-net. In other words, any big
enough subset of the sphere (specifically, any set with measure exceeding 1 −�
ε
π

�n) is an ε-net, for ε 2 [0,
p
2].

This construction of an ε-net is good when you don’t have much control
over the set in question (as we didn’t, in Szarek’s theorem), but if you can
choose the set yourself, there is a standard way to construct much smaller ε-
nets (indeed, finite ones).

First, a sketch of the main ideas: (a) a maximal ε-separated set is an ε-net,
and since (b) any ε-separated set yields a packing of ε

2
-caps in Sn−1, we can

(c) bound the number of points of an ε-separated set by a volumetric argument.
On the other hand, (d) any ε-net yields a cover of Sn−1 by ε-caps, which (e) by
a similar volumetric argument yields a lower bound for the size of an ε-net.
The resulting bounds are:

1

σ(ε-cap)
� minimum number of points in ε-net � 1

σ(ε
2

-cap)
.

(Since an ε-cap is, for small ε, essentially the same as εBn−12 , we expect these
bounds to be, respectively, something like

�
1
ε
)n−1 and

�
2
ε
)n−1.)

Now, the details behind the sketch above:

(a) Let Λ be a maximal ε-separated subset of Sn−1. Maximality means that
adding any other point of Sn−1 destroys the ε-separation. In other words,
every other point of Sn−1 is within ε of some point in Λ.

(b) For Λ to be ε-separated means

8x, y 2 Λ : x 6= y =⇒ |x− y| � ε .

Now,

|x− y| � ε ⇐⇒ x− y /2 int εBn2⇐⇒ x− y /2 int ε
2
Bn2 − int ε

2
Bn2 (�)⇐⇒ (x+ int ε

2
Bn2 ) \ (y+ int ε

2
Bn2 ) = ?

Thus Λ is ε-separated if and only if its points are the centres of a packing
of ε
2

-caps. (Note that step (�) uses the convexity and symmetry of Bn2 .)
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(c) Given a disjoint (or almost disjoint) collection of ε
2

-caps in Sn−1, we can
compute

1 = σ(Sn−1) � σ(union of the ε
2

-caps) = (number of caps)σ(ε
2

-cap) .

(d) For Λ to be an ε-net for Sn−1 means that every point of Sn−1 is in some
ε-cap centred at a point of Λ, which means that these caps cover Sn−1.

(e) Given a collection of ε-caps that cover Sn−1, we have

1 = σ(Sn−1) = σ(union of the ε-caps) � (number of caps)σ(ε-cap) .

Now, computing σ(ε-cap) is somewhat annoying. We can simplify our
computations considerably by noting that, by the argument in part (b) above,
any ε-separated set of points in Sn−1 yields a collection of almost disjoint
copies of ε

2
Bn2 with centres on Sn−1. Such balls are subsets of (1+ ε

2
)Bn2 , so by

the same volumetric argument as in part (c), any ε-separated set has at most

vol((1+ ε
2
)Bn2 )

vol(ε
2
Bn2 )

=
(1+ ε

2
)n

(ε
2
)n

=

�
1+

2

ε

�n
points. If ε 2 [0, 1], this is at most ( 3

ε
)n, which is for many purposes close

enough to optimal.
Note that with such a net Λwe obtain

1

σ(ε-cap)
� card(Λ) �

�
3

ε

�n
(where card denotes cardinality) and so

0 � ε � 1 =⇒ σ(ε-cap) �
�ε
3

�n
,

which is very close to (12), that is, lemma 4. It is in fact possible to prove
Szarek’s theorem using this estimate, and we get a slightly better constant.

10 Comparison with Milman’s theorem

Let K be a convex body in Rn with Bn2 � K. Milman’s theorem asserts that Feb 8

For any ε > 0, most subspaces F of dimension � c(ε)n(M(K))2

satisfy d(K \ F, Bn2 \ F) � 1+ ε.

TheM parameter is the average of the norm on the sphere:

M(K) =

∫
Sn−1

kθkK dσ(θ) ,

Steven Taschuk � 2011 August 5 � http://www.amotlpaa.org/math/sem200911.pdf 21

http://www.amotlpaa.org/math/sem200911.pdf


where σ is, as usual, the uniform probability measure on Sn−1. This parameter
is not affine invariant, or even linear invariant, although we do haveM(QK) =

M(K) for orthogonal Q, andM(bK) = 1
b
M(K) for scalar b.

In analogous language, Szarek’s theorem asserts that

For any kwith 1 � k < n, most subspaces F of dimension k satisfy

d(K \ F, Bn2 \ F) �
 
4π

�
vol(K)

vol(Bn2 )

�1/n!n/(n−k)
.

Comparing these two theorems shows a trade-off between distance and di-
mension: if you want the section K \ F to be very close to Euclidean, then you
can use Milman’s theorem, and the dimension of F might not be large; on the
other hand, if you want a high-dimensional section, then you can use Szarek’s
theorem, and the distance to the Euclidean ball might not be small.

The parameters involved in the two theorems are related:

1

M(K)
�
�

vol(K)
vol(Bn2 )

�1/n
�M(K�) . (13)

The upper inequality is called Urysohn’s inequality; a proof appears in [15],
page 6.13 The lower inequality is easy:

vol(K)
vol(Bn2 )

=

∫
Sn−1

1

kθknK
dσ(θ) (by lemma 2; see page 8)

= E(X−n) (with X : Sn−1 → R, θ 7→ kθkK)

� (EX)−n (Jensen’s inequality: t 7→ t−n is convex)

=
1

M(K)n

The lower inequality in (13) already yields good information about nearly-
Euclidean sections of Bn1 : recall from section 6 that

vr(Bn1 ) =
�

vol(
p
nBn1 )

vol(Bn2 )

�1/n
∼ c .

Therefore
1

c
�M(

p
nBn1 ) � 1 ,

so M(
p
nBn1 ) is bounded (independently of n). Milman’s theorem then yields

that
p
nBn1 (and hence Bn1 ) has (1+ ε)-Euclidean sections of dimension c(ε)n.

13As Peter pointed out during the seminar, it also follows immediately by combining the lower
inequality with the Blaschke–Santaló inequality.
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This approach fails for Bn∞ because vr(Bn∞) ∼ c
p
n, so we only obtain

M(Bn∞) � cp
n

,

which yields only that Bn∞ has (1+ε)-Euclidean sections of dimension c(ε). But
this is trivial, since if we are content with sections of constant dimension, we
can just take one-dimensional sections, which are line segments and therefore
exactly Euclidean.14

Now, it turns out that, for symmetric K,

M(KJohn) �M(Bn∞) � c
r

logn
n

. (14)

This yields that every symmetric convex body has (1 + ε)-Euclidean sections
of dimension c(ε) logn, which is (Milman’s improvement of) Dvoretzky’s the-
orem.

Traditionally one deduces Dvoretzky’s theorem from Milman’s theorem not
by proving exactly that M(KJohn) � M(Bn∞), but instead by first proving the
Dvoretzky–Rogers lemma, which shows that we can trade half the dimensions
of our section for some resemblance to the cube (in the new, lower-dimensional
section). This approach resembles (14) in spirit.

The last topic of this seminar is to prove the first inequality in (14) by ex-
ploiting much of what we have proved already. (The possibility of using this
method is the concluding remark of [3].15)

Proposition 14 If f : Rn → R is measurable and positively homogeneous (that
is, f(λx) = λf(x) when λ � 0), then∫

Rn

f(x)dγn(x) =

p
2 Γ(n+1

2
)

Γ(n
2
)

∫
Sn−1

f(θ)dσ(θ) ,

where γn is the standard gaussian probability measure on Rn, which has den-
sity e−|x|2/2/(2π)n/2, and σ is the uniform probability measure on Sn−1.

Proof In brief,∫
Rn

f(x)dγn(x) =
1

(2π)n/2

∫
Rn

f( x
|x|

)|x|e−|x|2/2 dx

=
nvol(Bn2 )
(2π)n/2

∫
Sn−1

∫∞
0

f(θ)rne−r
2/2 drdσ(θ) (by lemma 1)

=
nvol(Bn2 )
(2π)n/2

� 2(n−1)/2Γ(n+1
2

)

∫
Sn−1

f(θ)dσ(θ)

14As Sasha pointed out in seminar, the c(ε) that arises this way is probably less than 1 anyway,
so the result is especially useless.

15Update: This proof was given explicitly in [16], Proposition 4.11.
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Substituting the value of vol(Bn2 ) (see page 16) and simplifying yields the de-
sired result. �

(Incidentally, note that we can compute the normalizing constant (2π)n/2

for the gaussian measure by invoking lemma 9; see page 15.)
In particular, proposition 14 and Stirling’s approximation yield

M(K) =
Γ(n
2
)p

2 Γ(n+1
2

)

∫
Rn

kxkK dγn(x) ∼ 1p
n

∫
Rn

kxkK dγn(x) .

For example, if X is a standard gaussian variable in Rn, then

E|X| =

∫
Rn

|x|dγn(x) ∼
p
nM(Bn2 ) =

p
n .

Proposition 15 If K is a symmetric convex body in Rn, then for all r 2 R,
γn(rKJohn) � γn(rBn∞).

(This proposition resembles the symmetric case of Ball’s theorem (see page 3),
but for gaussian measure; we use a similar technique to prove it.)

Proof Let (ui)m1 and (ci)
m
1 be as in John’s theorem. We may assume r � 0.

Then

γn(rK) � γn({x 2 Rn : (8i : |hx, uii| � r)})

=

∫
Rn

[8i : |hx, uii| � r] e
−|x|2/2

(2π)n/2
dx

=

∫
Rn

[8i : |hx, uii| � r] e
−

∑
cihx,uii2/2

(2π)
∑
ci/2

dx

=

∫
Rn

m∏
i=1

 
[|hx, uii| � r]e

−hx,uii2/2

(2π)1/2

!ci
dx

�
m∏
i=1

 ∫
R

[|t| � r] e
−t2/2

(2π)1/2
dt

!ci
(Brascamp–Lieb; see page 5)

= γ1([−r, r])
n

= γn(rB
n∞)

�

Corollary 16 IfK is a symmetric convex body inRn, thenM(KJohn) �M(Bn∞).
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Proof Indeed, for any symmetric convex body L,

M(L) =
Γ(n
2
)p

2 Γ(n+1
2

)

∫
Rn

kxkL dγn(x) (by proposition 14)

=
Γ(n
2
)p

2 Γ(n+1
2

)

∫∞
0

γn(x : kxkL � t)dt (distribution formula)

=
Γ(n
2
)p

2 Γ(n+1
2

)

∫∞
0

(1− γn(tL))dt

Since γn(tL) is maximal for L = Bn∞ by proposition 15, it follows that M(L) is
minimal for L = Bn∞. �
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