
Notes on tangents to parabolas

(These are notes for a talk I gave on 2007 March 30.)

The point of this talk is not to publicize new results. The most recent ma-
terial in it is the concept of Bézier curves, which dates to the late 1950s; the
second most recent material is the quadrature of the parabola, which is a fa-
mous result of Archimedes from 250 BC or so. The point of this talk is, rather,
to advertise synthetic geometry, that is, geometry without coordinates, as prac-
ticed by Euclid.

Consider, for example, the following proposition: Let the tangents to a
parabola at P andQmeet at R. LetM andN be the midpoints of PR and RQ re-
spectively. ThenMN is also tangent to the parabola, and the point of tangency
is the midpoint ofMN.
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We’ll prove this below. For now, just notice how thoroughly routine it is to
prove it with modern techniques. Adopting an appropriate coordinate system,
the parabola has equation y = x2. Let P be the point (p, p2), and let Q be the
point (q, q2). Now just compute everything: deploy the techniques of first-
year calculus to find the equations of the tangent lines; solve a two-equation
linear system to find the coordinates of their intersection; and so on.

Those computations are not totally without interest, but they don’t leave
me feeling that I understand the phenomenon. A synthetic approach yields, at
least, an instructively different view of it.

The first order of business is to understand what a tangent is, a question
that turns out to be somewhat thornier than you might expect.

In calculus we have a definition of tangents (of graphs of functions, at first,
and later of more general curves) in terms of derivatives, but this requires a
large apparatus of theory which involves coordinates at a fundamental level,
and is rather in the wrong spirit for what we’re doing.
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In Euclidean geometry one usually deals with tangents to circles, and for
circles we have a simple definition: a line is tangent to a circle if it meets the
circle at exactly one point. This definition will not, however, serve for parabo-
las. We do indeed expect that a tangent to a parabola will meet the parabola
only at the point of tangency, but so too will a line parallel to the axis of the
parabola.1

Euclid’s own definition of tangents is slightly more helpful: “A straight line
is said to touch a circle which, meeting the circle and being produced, does not
cut the circle.”2 That is, a tangent is a line that meets but does not cut.

“Meeting” is easy to understand: lines and other curves are sets of points,
and they “meet” at a point if they both contain that point. “Cutting” is a bit
more mysterious; Euclid doesn’t define it. The simplest interpretation I can
think of is this: a line divides the plane into two regions; the line, we say, cuts a
figure if the figure contains points in both of those regions.3

There are a few ways to define parabolas; for our purposes, the simplest
one is this: We are given a point F, called the focus of the parabola, and a line d,
called its directrix. The parabola consists of those points which are equidistant
from the focus and the directrix.

1The righteous way to deal with this problem is actually found in projective geometry; there,
the parabola and a line parallel to its axis do meet at a second point, a “point at infinity”, so we can
define tangents for parabolas as we do for circles. (Indeed, in projective geometry all conics are the
same.)

2Euclid’s Elements, Book III, Definition 3, quoted from The Thirteen Books of Euclid’s Elements,
trans. and ed. Thomas L. Heath, 2nd ed. (New York: Dover, 1956), 2:1.

3This definition of “cut” means that a line that meets but does not cut is, in the terminology of
convex geometry, a “supporting hyperplane”, not a tangent. We can get away with this because
the interior of the parabola is convex. (Proving that is a good exercise.)
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As usual, when we speak of distance between a point and a line, we mean
the perpendicular distance. Thus, to determine whether a point P is on the
parabola, we drop the perpendicular from P to d, meeting d at P 0; then we
compare the distance PF to the distance PP 0. P is on the parabola if and only
if PF = PP 0.

We will be dropping perpendiculars to d quite often in what follows. The
foot of the perpendicular will always be named with the prime symbol; that
is, for any point X, the foot of the perpendicular dropped from X to d will be
called X 0.

Now, the fact that a point P on the parabola is equidistant from P 0 and F has
a familiar consequence: P lies on the perpendicular bisector of the segment P 0F.
Our first theorem asserts that this line not only passes through P but is the
tangent to the parabola there.

One-Tangent Theorem Let P lie on the parabola. The perpendicular bisector
of P 0F is the tangent to the parabola at P.

Proof Let ` be the perpendicular bisector of P 0F. We have already seen that
` passes through P, so ` meets the parabola. It remains to show that ` does not
cut the parabola.

We will show that every point on the parabola is on the same side of ` as F;
equivalently, that no point on the opposite side of ` from F is on the parabola.
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Let Q lie on the opposite side of ` from F. Join QF, meeting ` at R. We have

QF = QR+ RF (R is between Q and F)

= QR+ RP 0 (R is on `)

> QP 0 (triangle inequality; see below)

� QQ 0 (perpendicular is shortest)

and so Q does not lie on the parabola.
The inequality QR + RP 0 > QP 0 is strict because R does not lie on the seg-

ment QP 0. For since ` is, by construction, the perpendicular bisector of P 0F,
P 0 and F lie on opposite sides of `. ThereforeQ and P 0 lie on the same side of `,
that is, the segment QP 0 does not intersect `. In particular, the segment QP 0

does not contain R. �

This proof is, in fact, not complete. It does show that, by our definitions,
the line described is tangent to the parabola at P; but the theorem asserts that
it is the tangent to the parabola at P. We have not seen any argument that the
parabola has only one tangent at each point. The only proof I have of this
statement (in the style of geometry we’re doing) is quite long and involved, so
I omit it. If you know of a simple proof, I’d like to hear about it.

As an application of the One-Tangent Theo-
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rem, we can prove the famous optical property
of the parabola. In the figure at right, α = β since
the tangent bisects \FPP 0, and β = γ as verti-
cal angles. So α = γ, which since light bounces
with the angle of incidence equal to the angle of
reflection entails that a beam of light emanating
from F and hitting the parabola at P will bounce
off along the (extension of the) line PP 0. And, of course, in reverse: light arriv-
ing perpendicular to the directrix will be reflected to the focus.

Steven Taschuk � 2011 August 21 � http://www.amotlpaa.org/math/parabtan.pdf 4

http://www.amotlpaa.org/math/parabtan.pdf


The following theorem gives another example of how the One-Tangent The-
orem turns knowledge of perpendicular bisectors into knowledge of tangents
to parabolas.

Two-Tangent Theorem Let P andQ lie on the parabola, and let the tangents
at P and Qmeet at R. Then R 0 bisects P 0Q 0.

Proof By the One-Tangent Theorem, PR is the perpendicular bisector of P 0F,
and QR is the perpendicular bisector of Q 0F. Therefore their intersection R is
the circumcentre of4P 0FQ 0, and RR 0, being the perpendicular from R to P 0Q 0,
is also the perpendicular bisector of P 0Q 0.
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Three-Tangent Theorem Let P,Q, and X lie on the parabola. Let the tangents
at P and Qmeet at R. Let the tangent at Xmeet PR atM and RQ at N. Then
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MR
=
MX

XN
=
RN

NQ
.

Proof

d
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P 0 M 0 X 0

R 0

N 0 Q 0
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By the Two-Tangent Theorem (for the tangents PM and MX), P 0M 0 = M 0X 0.
Furthermore,

P 0M 0 = 1
2
P 0X 0 (Two-Tangent Th.: PM,MX)

= 1
2
P 0Q 0 − 1

2
X 0Q 0

= R 0Q 0 −N 0Q 0 (Two-Tangent Th.: PR, RQ; and XN, NQ)

= R 0N 0 .

Thus P 0M 0 =M 0X 0 = R 0N 0. Similarly,M 0R 0 = X 0N 0 = N 0Q 0, so

P 0M 0

M 0R 0
=
M 0X 0

X 0N 0
=
R 0N 0

N 0Q 0
.

The desired equalities now follow by parallels. �

Letting t = MR
PR

(so that the proportion mentioned in the statement of the
Three-Tangent Theorem is (1 + t)−1) and considering the points as vectors (so
we can apply vector arithmetic), we have

M = (1− t)P + tR ,

N = (1− t)R+ tQ ,

and X = (1− t)M+ tN ,

whence
X = (1− t)2P + 2t(1− t)R+ t2Q .

As t varies from 0 to 1, the point X varies along the parabola from P to Q.
Notice that the coefficients of this linear combination of P, Q, and R arise from
the expansion of the square of a binomial:

((1− t) + t)2 = (1− t)2 + 2t(1− t) + t2 .

It is, then, natural to consider analogous parameterizations of curves based on
the expansion of other powers of a binomial. For example, considering the
cube of a binomial leads to the curve

(1− t)3u+ 3t(1− t)2v+ 3t2(1− t)w+ t3x

(where u, v,w, and x are fixed vectors). The families of curves obtained by such
parameterizations are known as Bézier curves, and are much used in computer
graphics and computer-aided design.4

The Three-Tangent Theorem can also be applied to prove a famous result
of Archimedes.5 Taking the special case where the proportion in the theorem

4A great deal of information about these curves can be found by web search.
5See his Quadrature of the Parabola, in The Works of Archimedes, trans. and ed. Thomas L. Heath

(New York: Dover, 2002), 233–52. He gives two proofs; the one in the text differs from both. Also,
his statement of the result is that the area of the parabolic segment is 4

3
the area of 4PQX.
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is 1 yields the corollary mentioned at the beginning of these notes: Let the
tangents to a parabola at P and Q meet at R. Let M and N be the midpoints
of PR and RQ respectively. Then MN is also tangent to the parabola, and the
point of tangency X is the midpoint ofMN.
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Let the area of 4PQR, the triangle formed by the two tangents and the se-
cant, be 1. The parabolic “segment” PQX includes the triangle 4PQX, with
area 1

2
, and excludes the triangle 4MNR, with area 1

4
. The remaining pieces,

4PMX and 4XNQ, are two smaller instances of the same situation: they are
triangles formed by two tangents and a secant. By the analogous subdivision of
these triangles, the parabolic segment includes 1

2
of their area and excludes 1

4
of

it, leaving four new smaller instances of the same situation again. Continuing
in this manner, we see that the area of the parabolic segment is 1

2
/(1

2
+ 1

4
) = 2

3

of the area of4PQR.
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