Measurable sets with non-measurable Minkowski sum

Some of the results of [2], somewhat reorganized. Throughout, \(\mathbb{R} \) is endowed with Lebesgue measure and considered as a vector space over \(\mathbb{Q} \) (so that when we speak of linear combinations we mean linear combinations with rational coefficients, and likewise for the notions of linear dependence, span, and basis).

Proposition 1 Any set of positive measure contains two distinct points whose difference is rational.

Proof Let \(A \subseteq \mathbb{R} \) have positive measure. Then there is some bounded interval \(I \) such that \(A \cap I \) has positive measure. If \(A \) had no points such as desired, then the sets \((A \cap I + \frac{1}{n} : n \in \mathbb{N}) \) would be pairwise disjoint. But then the union of these sets would have infinite measure, despite being contained in an interval. \(\square \)

Remark 2 Steinhaus’s theorem asserts that the difference set of a set of positive measure contains an interval around the origin, which immediately implies the proposition; but Sierpiński proves the statement as above. For references and a simple proof of Steinhaus’s theorem, see [3]. (Steinhaus’s original paper on this subject is actually in the same issue of Fundamenta Mathematicae as, and immediately precedes, Sierpiński’s paper [2].)

Corollary 3 Any set of positive measure spans \(\mathbb{R} \).

Proof Let \(A \subseteq \mathbb{R} \) have positive measure. Let \(x \in \mathbb{R} \). If \(x = 0 \) then \(x \in \text{span} A \); assume \(x \neq 0 \). Then \(\frac{1}{x} A \) has positive measure; let \(a, b \in A \) be distinct and such that \(\frac{a}{x} - \frac{b}{x} = q \in \mathbb{Q} \). Since \(a \neq b \), we have \(q \neq 0 \), and so \(x = (a - b)/q \in \text{span} A \). \(\square \)

Remark 4 As Sierpiński notes, if \(\mathbb{R} \) has a basis, then it follows from the above result that nonmeasurable sets exist. Indeed, if \(B \) is a basis, choose \(b \in B \) and let \(V = \text{span} (B \setminus \{ b \}) \). Then \(V \) cannot have positive measure because it is a proper subspace of \(\mathbb{R} \), and it cannot have zero measure because \(\mathbb{R} = \bigcup_{q \in \mathbb{Q}} (V + q b) \) is a countable union of translates of \(V \).

Corollary 5 Any measurable basis for \(\mathbb{R} \) has measure zero.

Proof By contraposition. Suppose \(A \subseteq \mathbb{R} \) has positive measure. Let \(a \in A \). Then \(A \setminus \{ a \} \) has positive measure, and so \(a \in \mathbb{R} = \text{span}(A \setminus \{ a \}) \). Therefore \(A \) is linearly dependent. \(\square \)

Proposition 6 \(\mathbb{R} \) has a measurable basis.

Proof Let \(X \) be the set of real numbers whose binary expansions have zeroes in even-numbered places after the binary point; let \(Y \) be the set of real num-

Steven Taschuk · 2011 May 27 · http://www.amotlpaa.org/math/nonmeasurable-sum.pdf
bers whose binary expansions have zeroes in odd-numbered places after the binary point. Let \(B \) be a subset of \(X \cup Y \) which is linearly independent and maximal for this condition. (I use Zorn’s lemma here; Sierpiński gives a slightly different argument at this stage, using Zermelo’s theorem that all sets can be well-ordered.) By maximality \(B \) spans \(X \cup Y \), hence spans \(\mathbb{R} \); it is linearly independent by construction; it has measure zero because \(X \) and \(Y \) do, and so in particular is measurable. \(\square \)

Remark 7 Sierpiński cites [1] for the statement that there exists a basis which meets every perfect set. Such a basis cannot have measure zero, since every set of full measure contains a perfect set; therefore such a basis is nonmeasurable.

Proposition 8 There exist measurable sets \(X, Y \subseteq \mathbb{R} \) such that \(X + Y \) is not measurable.

Proof Let \(B \) be a measurable basis for \(\mathbb{R} \). Fix \(b \in B \) and let \(V = \text{span}(B \setminus \{b\}) \). For each \(n \in \mathbb{N} \cup \{0\} \), let \(A_n \) be the set of real numbers with at most \(n \) nonzero coordinates in the basis \(B \). (Note that \(A_0 = \{0\} \).)

Now, assume for contradiction that sums of measurable sets are measurable. Since \(A_{n+1} = A_n + \bigcup_{q \in \mathbb{Q}} qB \), it follows by induction that all \(A_n \) are measurable. Since \(\mathbb{R} = \bigcup_{n \in \mathbb{N}} A_n \), some \(A_n \) has positive measure; let \(k \in \mathbb{N} \) be the least natural number such that \(A_k \) has positive measure.

Now, if \(q \in \mathbb{Q} \) and \(q \neq 0 \), then \(A_k \cap (V + qb) = A_{k-1} \cap V + qb \subseteq A_{k-1} + qb \), which is a translate of \(A_{k-1} \) and so has zero measure. Therefore \(A_k \cap (V + qb) \) has zero measure. But then \(A_k \cap V = A_k \setminus \bigcup_{q \neq 0} (A_k \cap (V + qb)) \) has the same measure as \(A_k \), in particular, positive measure, and so \(A_k \cap V \) spans \(\mathbb{R} \). But this is absurd, since \(V \) is a proper subspace of \(\mathbb{R} \). \(\square \)

References

