Measurable sets with non-measurable Minkowski sum

Some of the results of [2], somewhat reorganized. Throughout, \mathbb{R} is endowed with Lebesgue measure and considered as a vector space over \mathbb{Q} (so that when we speak of linear combinations we mean linear combinations with rational coefficients, and likewise for the notions of linear dependence, span, and basis).

Proposition 1 Any set of positive measure contains two distinct points whose difference is rational.

Proof Let A ⊆ \mathbb{R} have positive measure. Then there is some bounded interval I such that A ∩ I has positive measure. If A had no points such as desired, then the sets (A ∩ I + $\frac{1}{n}$: n ∈ \mathbb{N}) would be pairwise disjoint. But then the union of these sets would have infinite measure, despite being contained in an interval.

Remark 2 Steinhaus's theorem asserts that the difference set of a set of positive measure contains an interval around the origin, which immediately implies the proposition; but Sierpiński proves the statement as above. For references and a simple proof of Steinhaus's theorem, see [3]. (Steinhaus's original paper on this subject is actually in the same issue of Fundamenta Mathematicae as, and immediately precedes, Sierpiński's paper [2].)

Corollary 3 Any set of positive measure spans \mathbb{R} .

Proof Let A ⊆ ℝ have positive measure. Let $x \in \mathbb{R}$. If x = 0 then $x \in \text{span } A$; assume $x \neq 0$. Then $\frac{1}{x}A$ has positive measure; let $a, b \in A$ be distinct and such that $\frac{a}{x} - \frac{b}{x} = q \in \mathbb{Q}$. Since $a \neq b$, we have $q \neq 0$, and so $x = (a-b)/q \in \text{span } A$. □

Remark 4 As Sierpiński notes, if \mathbb{R} has a basis, then it follows from the above result that nonmeasurable sets exist. Indeed, if B is a basis, choose $b \in B$ and let $V = \text{span}(B \setminus \{b\})$. Then V cannot have positive measure because it is a proper subspace of \mathbb{R} , and it cannot have zero measure because $\mathbb{R} = \bigcup_{q \in \mathbb{Q}} (V + qb)$ is a countable union of translates of V.

Corollary 5 Any measurable basis for \mathbb{R} has measure zero.

Proof By contraposition. Suppose $A \subseteq \mathbb{R}$ has positive measure. Let $a \in A$. Then $A \setminus \{a\}$ has positive measure, and so $a \in \mathbb{R} = \text{span}(A \setminus \{a\})$. Therefore A is linearly dependent.

Proposition 6 \mathbb{R} has a measurable basis.

Proof Let X be the set of real numbers whose binary expansions have zeroes in even-numbered places after the binary point; let Y be the set of real num-

bers whose binary expansions have zeroes in odd-numbered places after the binary point. Let B be a subset of $X \cup Y$ which is linearly independent and maximal for this condition. (I use Zorn's lemma here; Sierpiński gives a slightly different argument at this stage, using Zermelo's theorem that all sets can be well-ordered.) By maximality B spans $X \cup Y$, hence spans \mathbb{R} ; it is linearly independent by construction; it has measure zero because X and Y do, and so in particular is measurable.

Remark 7 Sierpiński cites [1] for the statement that there exists a basis which meets every perfect set. Such a basis cannot have measure zero, since every set of full measure contains a perfect set; therefore such a basis is nonmeasurable.

Proposition 8 There exist measurable sets $X, Y \subseteq \mathbb{R}$ such that X + Y is not measurable.

Proof Let B be a measurable basis for \mathbb{R} . Fix $b \in B$ and let $V = \text{span}(B \setminus \{b\})$. For each $n \in \mathbb{N} \cup \{0\}$, let A_n be the set of real numbers with at most n nonzero coordinates in the basis B. (Note that $A_0 = \{0\}$.)

Now, assume for contradiction that sums of measurable sets are measurable. Since $A_{n+1} = A_n + \bigcup_{q \in \mathbb{Q}} qB$, it follows by induction that all A_n are measurable. Since $\mathbb{R} = \bigcup_{n \in \mathbb{N}} A_n$, some A_n has positive measure; let $k \in \mathbb{N}$ be the least natural number such that A_k has positive measure.

Now, if $q \in \mathbb{Q}$ and $q \neq 0$, then $A_k \cap (V+qb) = A_{k-1} \cap V+qb \subseteq A_{k-1}+qb$, which is a translate of A_{k-1} and so has zero measure. Therefore $A_k \cap (V+qb)$ has zero measure. But then $A_k \cap V = A_k \setminus \bigcup_{q \neq 0} (A_k \cap (V+qb))$ has the same measure as A_k , in particular, positive measure, and so $A_k \cap V$ spans \mathbb{R} . But this is absurd, since V is a proper subspace of \mathbb{R} .

References

- C. Burstin. Die Spaltung des Kontinuums in c in Lebesgueschem Sinne nichtmessbare Mengen. Sitzungsber. (Akad. Wiss. Wien., Math.-Nat. Kl., Abt. IIa), 125, 1916.
- [2] Wacław Sierpiński. Sur la question de la mesurabilité de la base de M. Hamel. Fund. Math., 1:105–111, 1920. http://matwbn.icm.edu.pl/ ksiazki/fm/fm11/fm1112.pdf.
- [3] Karl Stromberg. An elementary proof of Steinhaus's theorem. Proc. Amer. Math. Soc., 36(1):308, 1972.