Estimating central binomial coefficients
Below are some exercises giving successively better estimates on binomial
coefficients of the form (2;1) The methods are mostly elementary (which here

means something like “not using Stirling’s approximation”). Hints follow the
exercises.

1. Show that, if m > n > 0 then
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2. By considering a row of Pascal’s triangle, show that
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and thence, by the AM/GM/HM inequality,
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3. Show that

4. Show that
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Use Wallis” product to conclude
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Hints:
1. For the first inequality, show that if 0 <k <n < m then
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and multiply over k. For the third inequality, show that
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and sum over k.

2. For alist of positive numbers, the average is at most the maximum, which
is at most the sum.
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The formula for (*") then follows by induction. Applying the AM/GM

inequality, as indicated in the exercise, and the standard facts from anal-
ysis that

3. First show that

and deduce
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yields the upper estimate. The lower estimate follows from the GM/HM
inequality in a similar way.

4. The first formula follows by algebraic manipulation of the formula in the
previous exercise. Multiplying these two formulee yields the next.
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