
Estimating central binomial coefficients

Below are some exercises giving successively better estimates on binomial
coefficients of the form

�
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�
. The methods are mostly elementary (which here

means something like “not using Stirling’s approximation”). Hints follow the
exercises.
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and deduce that
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2. By considering a row of Pascal’s triangle, show that
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and thence, by the AM/GM/HM inequality,
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Use Wallis’ product to conclude
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.
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Hints:

1. For the first inequality, show that if 0 � k � n � m then
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and multiply over k. For the third inequality, show that
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and sum over k.

2. For a list of positive numbers, the average is at most the maximum, which
is at most the sum.

3. First show that �
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and deduce �
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The formula for
�
2n
n

�
then follows by induction. Applying the AM/GM

inequality, as indicated in the exercise, and the standard facts from anal-
ysis that �
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yields the upper estimate. The lower estimate follows from the GM/HM
inequality in a similar way.

4. The first formula follows by algebraic manipulation of the formula in the
previous exercise. Multiplying these two formulæ yields the next.
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