
Combinational logic with 3-colouring

To k-colour a graph is to assign a colour to each of its vertices, using at
most k colours altogether, in such a way that no two adjacent vertices have the
same colour. It is well-known that it can be determined in polynomial time
whether a given graph can be 2-coloured, but determining whether a given
graph can be 3-coloured is an NP-complete problem. So unless P = NP, the
ability to 3-colour graphs is in some sense greater than the ability to 2-colour
them. To illustrate how large an ability 3-colouring is, we will show that if we
can 3-colour graphs, then we can compute any boolean function.

We will use the colours 0, 1, and Z. The colour 0 represents the boolean
value “false”; the colour 1 represents the boolean value “true”; the colour Z

has no boolean meaning. A boolean expression such as

a∧ (¬b∨ c)

will be implemented as a suitable 3-colourable graph. Three of that graph’s
vertices represent the variables a, b, and c; these are called the input vertices.
One of its vertices represents the value of the expression; this is the output
vertex. To evaluate the boolean expression for a given truth assignment to the
variables, we first colour the input vertices 0 and 1 to show the desired truth
assignment; then we 3-colour the graph (by some unspecified method); then
we observe the colour of the output vertex, which will (due to the shape of the
graph) be either 0 or 1, according to the value of the expression for the given
truth assignment.

To make this work, we require not only that the graph be 3-colourable, but
that the set of its 3-colourings have a certain shape. First, for every way to
colour the input vertices with 0s and 1s, there must exist a 3-colouring of the
graph which colours the input vertices that way. (Otherwise there are truth as-
signments for which we cannot evaluate our boolean expression.) Second, ev-
ery 3-colouring of the graph in which the input vertices are assigned 0s and 1s
must also assign the output vertex the appropriate colour, according to the
value of the boolean expression for that truth assignment. (Otherwise our 3-
colouring method might miscalculate the boolean expression.)

To construct such a graph for our example boolean expression a∧ (¬b∨ c),
we will begin with a completely disconnected graph containing just the input
vertices a, b, c and an output vertex y.

Steven Taschuk � 2013 February 24 � http://www.amotlpaa.org/math/3circuit.pdf 1

http://www.amotlpaa.org/math/3circuit.pdf


a

b

c

y

It is now, in a silly sense, easy to evaluate the boolean expression by 3-colouring
this graph; once the input vertices a, b, c are assigned 0s and 1s, we need sim-
ply do this:

3-colour the graph, satisfying the constraint y = a∧ (¬b∨ c).

Our task is now to move the constraint into the graph, so that this instruction
can be replaced by “3-colour the graph”.

We will begin with the familiar step of breaking the constraint down into
more primitive constraints, one for each subexpression. (This process resem-
bles how a compiler might implement a large expression using temporary vari-
ables for intermediate results.) Thus from the current situation

a

b

c

y Constraint: y = a∧ (¬b∨ c)

we pass to the situation

a

b

c

y
x1

x2

Constraints: y = a∧ x2

x2 = x1 ∨ c

x1 = ¬b

Next, we wish to move, for example, the constraint x1 = ¬b into the graph; to
do so we connect the vertices x1 and b with some gadget, which of course will
be called “NOT”. Note that it is not quite adequate just to join b and x1 with an
edge, since that would allow one or the other to be coloured Z, while we want
them to be coloured with the boolean colours 0, 1. But it is easy to see that a
triangle will do the trick:

Steven Taschuk � 2013 February 24 � http://www.amotlpaa.org/math/3circuit.pdf 2

http://www.amotlpaa.org/math/3circuit.pdf


u, v 2 {0, 1}

u = ¬v

Z

u v

(The bottom vertex in this NOT gadget is always coloured Z.1) For simplicity
in the following diagrams, the NOT gadget will be denoted simply as an edge
with “NOT” written by it; thus we are now in this situation:

a

b

c

y
x1

x2

NOT
Constraints: y = a∧ x2

x2 = x1 ∨ c

It remains only to implement two-argument boolean functions such as ∨ and ∧.
As is well-known, we can implement any such function using NOT and OR, so
all we need is an OR gadget.

The OR gadget is rather complicated, so we’ll build up to it. First consider
this triangular gadget:

4T
Bu v

(u = B and v = X)

or (u 6= B and v = B)

u

v

w

T

B

On the left is the abbreviated notation for the gadget, and below that, the con-
straint it implements;2 on the right is the full implementation. The top vertex T

and the bottom vertex B are constant vertices of different colours; the third
colour is X. Note that, unlike in the NOT gadget, the vertices u and v here have
different roles; thus the abbreviated notation has an arrow to show which is
which.

1The ability to specify such constant vertices is necessary: 3-colouring is symmetrical under
permutation of colours, but we wish to implement boolean functions such as AND and OR which
are not symmetric under exchange of 0 and 1. Constant vertices are the simplest way to introduce
colour asymmetry.

2Note that we write out “and” and “or” in the statement of the constraint instead of using the
symbols ∧ and ∨. We reserve ∧ and ∨ for the functions on the colours 0 and 1, which are distinct
from the boolean values “true” and “false”. Of course the former represent the latter during the
evaluation of boolean expressions via 3-colouring — that’s the whole point — but identifying them
introduces many opportunities for confusions and subtle errors.

Steven Taschuk � 2013 February 24 � http://www.amotlpaa.org/math/3circuit.pdf 3

http://www.amotlpaa.org/math/3circuit.pdf


Now, to show that this gadget implements the constraint stated, we must
show two things: first, that if vertices u and v are connected as shown and
the graph is 3-colourable, then the constraint is satisfied; second, that if the
constraint is satisfied, then the rest of this gadget is 3-colourable. (It may well
be that the graph as a whole is not 3-colourable, or is only 3-colourable under
additional contraints on u and v; but we are concerned now only with the effect
of this gadget.)

So suppose the gadget is 3-colourable. Since u, v,w are all adjacent, they
represent all three colours T , B, and X. If u = B then v is adjacent to B and to T ,
so v = X. If u 6= B, then either v = B or w = B; we cannot have w = B, so v = B.
Thus the stated constraint is satisfied.

Now suppose the constraint is satisfied. If u = B and v = X then we can
complete the colouring of the gadget by taking w = T ; if u 6= B and v = B then
we can complete the colouring of the gadget by taking w to be either T or X,
whichever differs from u. Thus the gadget is 3-colourable.

This completes the proof that4T
B works as advertised. Putting two of them

together yields our next gadget, which in a sense tests whether a specified ver-
tex is coloured Z:3

EQZ
u w

(u = Z and w = 1)

or (u 6= Z and w = 0)

41
Z 4Z

0

u v w

The two4 gadgets together enforce the constraint

((u = Z and v = 0) or (u 6= Z and v = Z))

and ((v = 0 and w = 1) or (v 6= 0 and w = 0))

� {and distributes over or}
(u = Z and v = 0 and v = 0 and w = 1)

or (u = Z and v = 0 and v 6= 0 and w = 0)

or (u 6= Z and v = Z and v = 0 and w = 1)

or (u 6= Z and v = Z and v 6= 0 and w = 0)

� {second and third clauses contain contradictions on v}
(u = Z and v = 0 and v = 0 and w = 1)

or (u 6= Z and v = Z and v 6= 0 and w = 0)

� {v = 0 ⇒ v = 0; also, v = Z ⇒ v 6= 0}
(u = Z and v = 0 and w = 1) or (u 6= Z and v = Z and w = 0)

3Note again that writing the constraint in the simpler form “w = (u = Z)” would conflate the
boolean type of the expression “u = Z” with the colour type of the expression “w”.

Steven Taschuk � 2013 February 24 � http://www.amotlpaa.org/math/3circuit.pdf 4

http://www.amotlpaa.org/math/3circuit.pdf


The conditions on v are certainly satisfiable; removing them yields the condi-
tion claimed for EQZ.

With EQZ we can build EQOR:

a

b

c
EQOR

a, b, c 2 {0, 1}

a = b or c = 1

a

b

cuZ
EQZ

We have the constraint a, b 2 {0, 1} due to the Z at the left, and the con-
straint c 2 {0, 1} because c is at the endpoint of EQZ, which only allows these
values there. By the operation of EQZ there are then two cases: first, u =

Z and c = 1, in which case a and b are unconstrained; second, u 6= Z and c = 0,
in which case the gadget is 3-colourable exactly when a = b = ¬u. Thus this
gadget implements the constraint stated.

Three EQORs yield, finally, an OR gadget:

a

b

cOR

a, b, c 2 {0, 1}

c � a∨ b

0

0

a

b

c

EQOR

EQOR

EQOR

The top EQOR enforces that either a = 0 or c = 1, that is, a ⇒ c. Similarly the
bottom one enforces b ⇒ c; together they enforce a ∨ b ⇒ c. The left EQOR
enforces that either b = c or a = 1, which since a, b, c 2 {0, 1} means

(b � c)∨ a

� {bottom EQOR establishes b ⇒ c}
(c ⇒ b)∨ a

� {(p ⇒ q) � (¬p∨ q), with p, q := c, b}
¬c∨ b∨ a

� {the same, with p, q := c, a∨ b}
c ⇒ a∨ b

Thus the three EQORs together enforce c � a∨ b, as desired.

Steven Taschuk � 2013 February 24 � http://www.amotlpaa.org/math/3circuit.pdf 5

http://www.amotlpaa.org/math/3circuit.pdf

