
Distributed consensus, replicated state
machines and… a Raft!?

K∩W - August 11, 2015
Aaron Ounn

Summary

“Laying the groundwork”: Consensus; CAP theorem;
Failures semantics.

Raft: Motivation; Assumptions; Overview; Leadership
election; Log safety; Fault-tolerance; (Lots of) Examples

Recent work: Byzantine fault-tolerance; Asymmetric
partitions; Linearizability proof (Coq - Verdi) etc...

Distributed consensus?

Getting a set of processes to agree on a single
data value.
T. V. I. A.
Example:
- A national election: “Who are we going to elect president?”

- Processes are servers; database replica on each servers
(=nodes)

CAP Theorem
In the event of a network partition, which property do
you want to keep without sacrificing latency?

Consistency: All clients see the same data
even if requested concurrently.

Availability: All client’s requests to non-failing
nodes must result in a response.

Consistency?

Many different consistency models:
strict, atomic, causal, eventual, strong, weak
etc...
In the case of Raft, we are using “atomic
consistency” as our CM.

For more details, refer to [Tanen]

Failures semantics

How are nodes (= processes) in our cluster
allowed to fail?

Failures semantics

Fail-stop: a process fails by stopping without
warning.
Example: power outage, kernel panic etc...

Byzantine: a process fails by deviating from its
expected behavior, and/or exhibiting different
behavior for different observers.
Example: “traitorous” Byzantine general, defect on telemetric hardware
etc...

Raft: In Search of an Understandable
distributed consensus algorithm.

Dr Diego Ongaro, and Professor John Ousterhout
Stanford University (2014)

Distributed consensus algorithms

The Part-Time Parliament - Leslie Lamport (Paxos)

Viewstamped replication - B. Oki, Barbara Liskov
(Influenced Raft)

Unreliable failure detectors for reliable distributed
systems - T. Chandra, S. Toueg (Chandra-Toueg)

Motivation
“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system…
the final system will be based on an unproven protocol”

- Chubby authors

“The dirty little secret of the NSDI community is that at most
five people really, truly understand every part of Paxos ;-).”

- NSDI reviewer

See [1:RaFT]

Paxos made simple - L. Lamport

Paxos made moderately complex - R. Van Renesse, D. Altinzbuken

Paxos made practical - D. Mazieres

Paxos made transparent - H. Cui et al.

Paxos made live - T. Chandra, R. Griesmert, J. Redstone

Paxos made fun - A. Ounn (wip)

Assumptions

- The cluster works in an asynchronous fashion (no
upper bounds for message delays)

- The network is unreliable: partitions, duplication,
reordering can happen (will happen).

- Nodes fail by stopping (i.e no Byzantine fault-
tolerance).

Assumptions

- It is the client’s responsibility to communicate with
the leader

- nodes have access to infinite persistent storage;
no corruptions; write-ahead logging.

See [3: ARC RaFt]

- Reduction of the state space

- Detailed specifications (RPCs etc..)

- Lots of existing implementations (check out
mine!)

 Candidate Follower

 Leader

Client requests

LOG

State-machineState-machine State-machine State-machine

daemon LOG daemon LOG daemon LOG daemon

We want to have a high-degree of replication

We do not want to return obsolete/stale data

This is a coordination problem - how to manage Rs/Ws
and guarantee atomic consistency?

daemon == “consensus module”

Candidate Follower Leader

Raft: Overview

Leader election

Log replication

Safety

Leader Election

Randomized timers

Heartbeats to detect crashes/reset timers

Majority of nodes

The Leader Election happens using the
RequestVote RPC.

To become a Leader, a node has to receive a
majority of votes: ⌈N/2 + 1⌉ where N is the
number of nodes in our cluster.

Split votes are handled through nodes’ timers.
If an election timeout, it restarts.

Candidate Follower Leader

initial state - S_i

lose an
election

timer timeout

wins an election

discover Leader with a
higher-term

election timeout

Log replication

The cluster receives a “command” from a client.
Somehow (Assumption) the query reaches the
Leader who:

- appends the “command” to its log

- replicates the appended entry to the rest of the cluster

Log replication: fixing inconsistencies

Using RaftScope

Safety

Using RaftScope

Safety

1: ``“State Machine Safety: if a server has
applied a log entry at a given index to its state
machine, no other server will ever apply a
different log entry for the same index” ``

2: ``broadcastTime ≪ electionTimeout ≪ MTBF``

Recap:
1. Elects a leader
2. Handle client queries
3. Commit log entry when the Leader has

committed
4. Return response to the client
5. Rince, and repeat!

More!
Need for Byzantine fault-tolerance?
[Tangaroa] Tangaroa: a Byzantine Fault-tolerant-ish Raft consensus algorithm - C.Copeland,
H. Zhong

Asymmetric partitions? Geographically distributed datacenters?
[Unanimous] Unanimous: In Pursuit of Consensus at the Internet Edge - H. Howard
[Raft-Dev] - Discussion about asymmetric partitions

Proof of Raft’s Linearizability in Coq (using Verdi):
 [Verdi] + [VerdiRaft] - https://github.com/uwplse/verdi/pull/16 J. Wilcox - D. Woos

Misc:
[FLP] - Impossibility of Distributed consensus with One faulty process - M. Fischer, N. Lynch,
M. Paterson

https://github.com/uwplse/verdi/pull/16

References
[1:RaFT] - “In Search of an Understandable consensus algorithm” - D.Ongaro, J.Ousterhout
(Stanford University)
[2:ARCRaFT] - “ARC: Analysis of Raft Consensus” - H.Howard (Cambridge University)
[3:ARCRaFT] - [2:ARCRaFT] page 15,16
[3:CAP] - “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant
Web Services” - S.Gilbert, N. Lynch (MIT CSAIL)
[4:Consensus] - Distributed Algorithms - N. Lynch (1993 - MIT Press) p.397
[5:CouchDB] - CouchDB Guide 1.0.1 (slide 37)
[6:RaFTTalk] - Raft case study - Professor J. Ousterhout
[Tanen] - “Distributed systems: Principles and Paradigms” A. Tanenbaum
[Tangaroa] - BFTRaft - C.Copeland, H.Zhong
[Unanimous] - In Pursuit of Consensus at the Internet Edge - H. Howard

[Raft-DEV] - Discussion about asymmetric partitions
[Verdi] - "Verdi: A Framework for Implementing and Formally Verifying Distributed Systems"
[FLP] - https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-857.pdf
http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://groups.google.com/forum/#!topic/raft-dev/EQM8tf_uhPQ
https://homes.cs.washington.edu/~mernst/pubs/verify-distsystem-pldi2015.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

