Distributed consensus, replicated state
machines and... a Raft!?

KNW - August 11, 2015



Summary

“Laying the groundwork”: Consensus; CAP theorem;
Failures semantics.

Raft: Motivation; Assumptions; Overview; Leadership
election; Log safety; Fault-tolerance; (Lots of) Examples

Recent work: Byzantine fault-tolerance; Asymmetric
partitions; Linearizability proof (Coq - Verdi) etc...



Distributed consensus?

Getting a set of processes to agree on a single
data value.
T.V. L A

Example:
- A national election: “Who are we going to elect president?”

- Processes are servers; database replica on each servers
(=nodes)



CAP Theorem

In the event of a network partition, which property do
you want to keep without sacrificing latency?

Consistency: All clients see the same data
even if requested concurrently.

Availability: All client’s requests to non-failing
nodes must result in a response.




Consistency?

Many different consistency models:

strict, atomic, causal, eventual, strong, weak
etc...

In the case of Raft, we are using “atomic
consistency” as our CM.

For more details, refer to [Tanen]



Failures semantics

How are nodes (= processes) in our cluster
allowed to fail?



Failures semantics

Fail-stop: a process fails by stopping without
warning.

Example: power outage, kernel panic etc...

Byzantine: a process fails by deviating from its
expected behavior, and/or exhibiting different

behavior for different observers.

Example: “traitorous” Byzantine general, defect on telemetric hardware
etc...



Raft: In Search of an Understandable
distributed consensus algorithm.

Dr Diego Ongaro, and Professor John Ousterhout
Stanford University (2014)



Distributed consensus algorithms

The Part-Time Parliament - Leslie Lamport (Paxos)

Viewstamped replication - B. Oki, Barbara Liskov
(Influenced Raft)

Unreliable failure detectors for reliable distributed
systems - T. Chandra, S. Toueg (Chandra-Toueg)



Motivation

“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system...

the final system will be based on an unproven protocol”
- Chubby authors

“The dirty little secret of the NSDI community is that at most
five people really, truly understand every part of Paxos ;-).”

- NSDI reviewer

See [1:RaFT]



Paxos made simple - L. Lamport

Paxos made moderately complex - R. Van Renesse, D. Altinzbuken

Paxos made practical - D. Mazieres

Paxos made transparent - H. Cui et al.

Paxos made live - T. Chandra, R. Griesmert, J. Redstone

Paxos made fun - A. Ounn (wip)



Assumptions

- The cluster works in an asynchronous fashion (no
upper bounds for message delays)

- The network is unreliable: partitions, duplication,
reordering can happen (will happen).

- Nodes fail by stopping (i.e no Byzantine fault-
tolerance).



Assumptions

- Itis the client’s responsibility to communicate with
the leader

- nodes have access to infinite persistent storage;
no corruptions; write-ahead logging.

See [3: ARC RaFt]



O
- Reduction of the state space

- Detailed specifications (RPCs etc..)

- Lots of existing implementations (check out
mine!)



daemon == “consensus module”

State-machine State-machine

LOG \ daemon

J

LOG

daemon LOG daemon LOG \ daemon

Client requests

We want to have a high-degree of replication
We do not want to return obsolete/stale data

This is a coordination problem - how to manage Rs/Ws
and guarantee atomic consistency?



Candidate




Raft: Overview

Leader election
Log replication

Safety



Leader Election

Randomized timers
Heartbeats to detect crashes/reset timers

Majority of nodes



The Leader Election happens using the
RequestVote RPC.

To become a Leader, a node has to receive a
majority of votes: [N/2 + 11 where N is the
number of nodes in our cluster.

Split votes are handled through nodes’ timers.
If an election timeout, it restarts.



wins an election

timer timeout

Candidate

lose an
election discover Leader with a

higher-term
initial state - S_Jj

election timeout



Log replication

The cluster receives a “command” from a client.
Somehow (Assumption) the query reaches the
Leader who:

- appends the “command” to its log

- replicates the appended entry to the rest of the cluster



Log replication: fixing inconsistencies

Using RaftScope



Safety

Using RaftScope



Safety

1. "“State Machine Safety: if a server has
applied a log entry at a given index to its state
machine, no other server will ever apply a
different log entry for the same index”

2: “"broadcastTime K electionTimeout €< MTBF™



Recap:

1.
2.
3.

4.
5. Rince, and repeat!

Elects a leader

Handle client queries

Commit log entry when the Leader has
committed

Return response to the client



More!

Need for Byzantine fault-tolerance?

[Tangaroa] Tangaroa: a Byzantine Fault-tolerant-ish Raft consensus algorithm - C.Copeland,
H. Zhong

Asymmetric partitions? Geographically distributed datacenters?
[Unanimous] Unanimous: In Pursuit of Consensus at the Internet Edge - H. Howard
[Raft-Dev] - Discussion about asymmetric partitions

Proof of Raft’s Linearizability in Coq (using Verdi):
[Verdi] + [VerdiRaft] - https://github.com/uwplse/verdi/pull/16 J. Wilcox - D. Woos

Misc:
[FLP] - Impossibility of Distributed consensus with One faulty process - M. Fischer, N. Lynch,
M. Paterson


https://github.com/uwplse/verdi/pull/16

References

[1:RaFT] - “In Search of an Understandable consensus algorithm” - D.Ongaro, J.Ousterhout
(Stanford University)

[2:ARCRaFT] - “ARC: Analysis of Raft Consensus” - H.Howard (Cambridge University)
[3:ARCRaFT] - [2:ARCRaFT] page 15,16

[3:CAP] - “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant
Web Services” - S.Gilbert, N. Lynch (MIT CSAIL)

[4:Consensus] - Distributed Algorithms - N. Lynch (1993 - MIT Press) p.397
[5:CouchDB] - CouchDB Guide 1.0.1 (slide 37)

[6:RaFTTalk] - Raft case study - Professor J. Ousterhout

[Tanen] - “Distributed systems: Principles and Paradigms” A. Tanenbaum
[Tangaroa] - BETRaft - C.Copeland, H.Zhong

[Unanimous] - In Pursuit of Consensus at the Internet Edge - H. Howard

[Raft-DEV] - Discussion about asymmetric partitions

[Verdi] - "Verdi: A Framework for Implementing and Formally Verifying Distributed Systems"

[FLP] - https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf



http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-857.pdf
http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://groups.google.com/forum/#!topic/raft-dev/EQM8tf_uhPQ
https://homes.cs.washington.edu/~mernst/pubs/verify-distsystem-pldi2015.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

