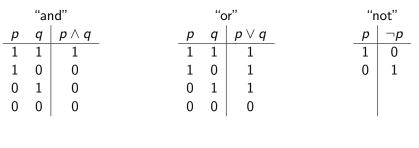
A few species of logic

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

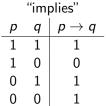
Classical logic

<□ > < @ > < E > < E > E のQ @

Classical logic



- like high school algebra, but variables take values 0 and 1 (resp., false and true)
- ▶ operations ∧, ∨, ¬, → instead of +, ·



Truth tables

Verification that $(q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow (p \rightarrow r)$ is a theorem:

			A	В	С		
р	q	r	q ightarrow r	p ightarrow q	p ightarrow r	$B \rightarrow C$	$A \rightarrow B \rightarrow C$
1	1	1	1	1	1	1	1
1	1	0	0	1	0	0	1
1	0	1	1	0	1	1	1
1	0	0	1	0	0	1	1
0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

Axioms and rules for (part of) classical logic

Axioms (all formulas of these forms are free):

1.
$$A \rightarrow (B \rightarrow A)$$

2. $(A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)$
3. $\neg A \rightarrow (A \rightarrow B)$
4. $\neg \neg A \rightarrow A$

Rule (how to get new formulas):

• (Modus Ponens) If you have A and $A \rightarrow B$, you can have B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example of an axiomatic proof

$$\begin{array}{l} \operatorname{Ax1.} A \to (B \to A) \\ \operatorname{Ax2.} (A \to (B \to C)) \to (A \to B) \to (A \to C) \\ \hline \\ \hline \\ \hline \\ 1. (p \to q \to r) \to (p \to q) \to (p \to r) \\ 2. [(p \to q \to r) \to (p \to q) \to (p \to r)] \\ \to (q \to r) \to [(p \to q \to r) \to (p \to q) \to (p \to r)] \\ 3. (q \to r) \to [(p \to q \to r) \to (p \to q) \to (p \to r)] \\ 4. [(q \to r) \to ((p \to q \to r) \to (p \to q) \to (p \to r))] \\ \to [(q \to r) \to (p \to q \to r)] \\ \to [(q \to r) \to (p \to q \to r)] \\ \to [(q \to r) \to (p \to q \to r)] \\ \to [(q \to r) \to (p \to q \to r)] \\ for matrix and an equation (p \to q) = (p \to r)] \\ 6. (q \to r) \to (p \to q) \to (p \to r) \\ 7. (q \to r) \to (p \to q) \to (p \to r) \\ \end{array}$$

What's not to like?

Nonconstructive principles:

▶
$$p \lor \neg p$$

▶ $\neg \neg p \rightarrow p$

$$\blacktriangleright \ (\neg q \to \neg p) \to (p \to q)$$

Explosion:

▶
$$p \land \neg p \rightarrow q$$

Paradoxes of material implication:

Modal logic

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Modal logic

Modal operators:

$$\begin{array}{c} \Box p & "p \text{ is necessary"} \\ \Diamond p & "p \text{ is possible"} \end{array} \right\} \text{ related by } \Box p = \neg \Diamond \neg p$$

Many kinds of necessity:

- logical
- physical
- metaphysical
- moral
- practical

Other modalities:

- p has always been true/will eventually be true
- p is known/believed/said to be true

Axioms and rules found in modal logics

Often:

- $\blacktriangleright \ \Box(p \to q) \to \Box p \to \Box q$
- if A is a theorem then $\Box A$ is a theorem

Sometimes:

• $\Box p
ightarrow \Box \Box p$ (also the dual $\Diamond \Diamond p
ightarrow \Diamond p)$

- $\Box p
 ightarrow p$ (also the dual $p
 ightarrow \Diamond p$)
- $\Diamond \Box p \rightarrow p$ (also the dual $p \rightarrow \Box \Diamond p$)
- $\Box p \rightarrow \Diamond p$

Rarely:

▶ $p \rightarrow \Box p$

Example of a proof in modal logic

Often:

$$\blacktriangleright \ \Box(p \to q) \to \Box p \to \Box q$$

If A is a theorem then □A is a theorem

Theorem: $\Box p \lor \Box q \to \Box (p \lor q)$

Proof:

 $p \rightarrow p \lor q$ is a theorem. Therefore $\Box(p \rightarrow p \lor q)$ is a theorem. Therefore $\Box p \rightarrow \Box(p \lor q)$. Similarly, $\Box q \rightarrow \Box(p \lor q)$. Therefore $\Box p \lor \Box q \rightarrow \Box(p \lor q)$.

Possible worlds

Classical propositional logic:

- "interpretation": choice of truth values for variables p, q, r, ...
- "theorem": formula which is true in all interpretations

"Normal" modal logic:

- "interpretation":
 - collection of worlds, each with truth values for the variables
 - some worlds can see other worlds (and/or themselves)
 - " $\Box p$ " is true at W if p true at all worlds that W can see
 - " $\Diamond p$ " is true at W if p true at some world that W can see

"theorem": formula true in all worlds in all interpretations

Example of a counterexample using possible worlds

 $\Box(p \lor q) \rightarrow \Box p \lor \Box q$ is not a theorem.

Counterexample:

Two worlds, each world seeing itself and the other.

 World
 p q $p \lor q$ $\Box(p \lor q)$ $\Box p$ $\Box q$ $\Box p \lor \Box q$

 1
 1
 0
 1
 1
 0
 0
 0

 2
 0
 1
 1
 0
 0
 0
 0

Axioms vs possible worlds

- $\Box p
 ightarrow \Box \Box p$ "seeing" is transitive
- $\Box p
 ightarrow p$ "seeing" is reflexive (every world can see itself)
- $\Box p
 ightarrow \Diamond p$ every world can see at least one world

Intuitionistic logic

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Intuitionistic logic

Intuitionism: a philosophy of mathematics

 A mathematical statement is "true" when a mathematician makes a mental "construction".

Rejects nonconstructive principles such as

▶
$$p \lor \neg p$$

$$\blacktriangleright \neg \neg p \rightarrow p$$

•
$$(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$$

Axioms:

1.
$$A \rightarrow (B \rightarrow A)$$

2. $(A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)$
3. $\neg A \rightarrow (A \rightarrow B)$
4. $\neg \neg A \rightarrow A$

Asymmetry of negation

$$A \rightarrow \neg \neg A \leftrightarrow \leftrightarrow A$$
 $\leftrightarrow \rightarrow A$ $\leftrightarrow \cdots$
 $\neg A \leftrightarrow \rightarrow A$ $\leftrightarrow \rightarrow A$ $\leftrightarrow \cdots$

$$egin{aligned} (p o q) o (
eglined q o
eglined p) & \checkmark \ (
eglined q o
eglined p) & \circ (p o q) & \times \ (p o
eglined q) & \circ (q o
eglined p) & \checkmark \ (
eglined q) & \circ (
egl$$

$$\neg (p \lor q) \rightarrow \neg p \land \neg q \quad \checkmark$$
$$\neg p \land \neg q \rightarrow \neg (p \lor q) \quad \checkmark$$
$$\neg (p \land q) \rightarrow \neg p \lor \neg q \quad \times$$
$$\neg p \lor \neg q \rightarrow \neg (p \land q) \quad \checkmark$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

More asymmetry of negation

Sketch of proof:

1.
$$p \lor \neg p \to \neg q$$
 (suppose)
2. $q \to \neg (p \lor \neg p)$ (contraposition)
3. $q \to \neg p \land \neg \neg p$ (De Morgan)
4. $q \to \bot$
5. $\neg q$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Corollary: $\neg \neg (p \lor \neg p)$

Grab bag

- Intuitionistic logic is part of classical logic (The part you get by omitting double negation, etc.)
- Classical logic is part of intuitionistic logic
 (A is classical theorem iff ¬¬A is intuitionistic theorem¹)
- ► Intuitionistic logic can be treated as a classical modal logic (□p: "p is proved")
- Intuitionistic logic has a complete topological model ("truth values" are open sets in the real line)

Multi-valued logic

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Reasons to want more than two truth values

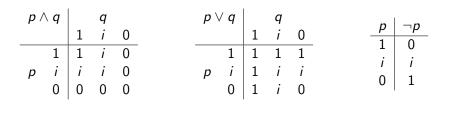
• Maybe some statements are neither true nor false.

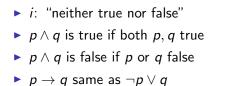
- future contingents
- open conjectures (if "true" means "proved")
- denotation failures
- fictional situations
- Maybe some statements are both true and false.
 - liar's paradox
 - inconsistent information
 - inconsistent laws

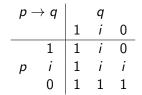
Maybe modality can be expressed with extra truth values.

- ▶ 1: true; 0: false; *i*: indeterminate
- possible: 1 or i
- ▶ necessary: 1

The three-valued Kleene logic







Modus ponens in Kleene logic

р	q	p ightarrow q	$p \wedge (p o q)$	$ \ p \wedge (p ightarrow q) ightarrow q$
1	1	1	1	1
1	i	i	i	i
1	0	0	0	1
i	1	1	i	1
i	i	i	i	i
i	0	i	i	i
0	1	1	0	1
0	i	1	0	1
0	0	1	0	1

- $p \land (p
 ightarrow q)
 ightarrow q$ is not a tautology
- but if p and p → q are true, then so is q (modus ponens is valid)

Deduction theorem

$\models A \rightarrow B$	$A \rightarrow B$ is a tautology (true no matter what A, B are)	
	when A is true, so is B (so, B can be inferred from A)	

Equivalent in classical logic, but not in Kleene logic. Classical logic has a "deduction theorem".

 K_3 has no tautologies at all, not even $p \rightarrow p$.

Some other multi-valued logics

- LP ("Logic of Paradox")
 - \blacktriangleright same definitions of $\neg,$ $\wedge,$ $\lor,$ \rightarrow as Kleene logic
 - i taken to mean "both true and false"
 - $A \vDash B$ if when A is true (1 or i), so is B
 - ▶ $p \land (p
 ightarrow q)
 ightarrow q$ is a tautology, but modus ponens not valid

Three-valued Łukasiewicz logic

- ▶ like Kleene logic, except $i \rightarrow i$ has value 1
- (p
 ightarrow q not the same as $\neg p \lor q)$
- has modus ponens, has contraposition, no excluded middle

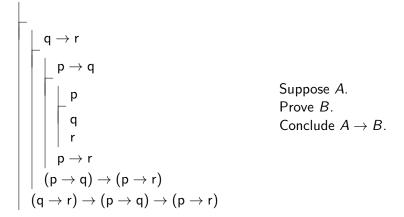
• weird deduction thm: $A \vDash B$ iff $\vDash A \rightarrow (A \rightarrow B)$

And lots more...

Relevance logic

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Subproofs



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

True statement implied by anything

p
ightarrow (q
ightarrow p) (but q not relevant to p!)

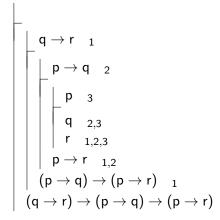
Proof in a system with subproofs:

 $\begin{bmatrix} & p \\ & p \\ & q \\ & p \\ & q \rightarrow p \\ & p \rightarrow (q \rightarrow p) \end{bmatrix}$

Suppose A. Prove B. Conclude $A \rightarrow B$. vs Suppose A. Prove B using A. Conclude $A \rightarrow B$.

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Track use of assumptions



Suppose A. Prove B. Conclude $A \rightarrow B$. vs Suppose A. Prove B using A.

Conclude $A \rightarrow B$.

Axioms for relevant implication

Can track use of assumption A with " $A \rightarrow$ "!

Grab bag

- ▶ Most popular relevant logic, *R*, is undecidable.
- Possible-worlds semantics use a ternary "seeing" relation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- No explosion: $p \land \neg p \not\rightarrow q$.
- May distinguish two kinds of \wedge , two kinds of \vee .

Main sources

Books:

- Priest, An Introduction to Non-Classical Logic
- ► Gabbay and Guenthner eds., *Handbook of Philosophical Logic*
- Hughes and Cresswell, An Introduction to Modal Logic
- Anderson and Belnap, Entailment: The Logic of Relevance and Necessity

Web:

- Stanford Encyclopedia of Philosophy
- Wikipedia