
Documentation for Enkidu v3.1

Contents

1 Introduction 1
2 Typical structure of an Enkidu program 1
3 Running an Enkidu program 3
4 Examples 4

4.1 Vector arithmetic . 4
4.2 More vector arithmetic: orthogonal projection 5
4.3 Intersections: inversion as a composition of projections 6
4.4 More intersections: line meets parabola 7

Example

A BN

Pfrom __future__ import division
from enkidu import *

circ = circle(vec.zero, 1)
a = circ.pt(180)
b = circ.pt(0)
p = circ.pt(110)
n = foot(p, join(a, b))

lft, bot, rt, top = bbox(a, b, circ.pt(90))
margin = 3
width = 158 - 2*margin
height = (top - bot)*width/(rt - lft)
f = figure(width, height, margin, lft, bot, rt, top)

for pt in [a,b,n,p]:
f.clipdot(pt)

f.polyline(a, b)
f.polyline(p, n)
f.circle(circ, 0, 180)
f.circle(circle.ondiam(a, n), 0, 180)
f.circle(circle.ondiam(n, b), 0, 180)
f.circle(circle.ondiam(p, n), 0, 360)
f.label(’A’, ’t’, a)
f.label(’B’, ’t’, b)
f.label(’N’, ’t’, n)
f.label(’P’, ’b’, p)

if __name__ == ’__main__’:
main(f)

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 0

http://www.amotlpaa.org

1 Introduction

Enkidu is software for generating geometric diagrams in LATEX documents. To
make a diagram using Enkidu, you write a Python program describing the di-
agram; running this program creates PostScript and LATEX files which together
produce the diagram in your document.

The program on the title page, for example, produces the diagram shown
there, which is the figure for Proposition 4 of Archimedes’ Book of Lemmas, on
the area of an arbelos.1

To use Enkidu at all, you need basic knowledge of Python. To label objects
in your figure with mathematical notations, you need to know some LATEX. To
produce effects that I haven’t already arranged for, you will probably need to
know some PostScript.

2 Typical structure of an Enkidu program

The example on the title page illustrates the typical structure of an Enkidu
program, which consists of three main parts: geometric computations, creating
a figure object, and drawing the figure.

The first section computes the geometric objects needed to draw the figure.

circ = circle(vec.zero, 1)
a = circ.pt(180)
b = circ.pt(0)
p = circ.pt(110)
n = foot(p, join(a, b))

The circle circ is centred at the origin and has radius 1. The points a, b, and p
lie on this circle at angles 180◦, 0◦, and 110◦ respectively. (Angles in Enkidu
are always denoted in degrees; 0◦ is east and 90◦ is north.) The point n is com-
puted geometrically: the expression join(a, b) computes the line through
the points a and b, and n is computed as the foot of the perpendicular from the
point p to that line.

Having computed all points of interest, the program creates the figure
object f.

lft, bot, rt, top = bbox(a, b, circ.pt(90))
margin = 3
width = 158 - 2*margin
height = (top - bot)*width/(rt - lft)
f = figure(width, height, margin, lft, bot, rt, top)

There are two coordinate systems at work in an Enkidu diagram: the “draw-
ing” coordinate system and the “figure” coordinate system. In the drawing co-
ordinate system, the bottom left corner of the figure is the origin, and x- and y-
coordinates are measured in PostScript points (which TEX calls “big points”).
The figure coordinate system may have its origin anywhere, and x- and y-units

1The Works of Archimedes, ed. T. L. Heath (Cambridge UP, 1897; Dover, 2002), 305.

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 1

http://www.amotlpaa.org

of any size; this coordinate system is used for points in the figure, and so can
be chosen for convenience in that purpose, without regard to the actual size of
the figure on the page.

When a figure object is constructed, the user specifies seven values. The
first three — width, height, and margin — specify the size of the figure
on the page: width + 2*margin points wide and height + 2*margin
points tall. The next four values specify the coordinates, in the figure coor-
dinate system, of the edges of the drawing region, that is, the rectangle which
is width points wide and height points tall. (Note that this region excludes
the margin.)

The example program computes these seven values by a method appropri-
ate when the figure’s desired total width (in the example, 158 points) is known,
and all other values should be accommodated to that value. The range of co-
ordinates needed to represent the points of interest is computed with the bbox
(bounding box) function; width is computed from the desired total width and
the margin size; and height is computed in proportion to width.

The third and last section of the program draws the figure:

for pt in [a,b,n,p]:
f.clipdot(pt)

f.polyline(a, b)
f.polyline(p, n)
f.circle(circ, 0, 180)
f.circle(circle.ondiam(a, n), 0, 180)
f.circle(circle.ondiam(n, b), 0, 180)
f.circle(circle.ondiam(p, n), 0, 360)
f.label(’A’, ’t’, a)
f.label(’B’, ’t’, b)
f.label(’N’, ’t’, n)
f.label(’P’, ’b’, p)

This section is largely self-explanatory. Note that geometric computations may
well take place here; for example, the semicircle on AN has no relevance to any
prior computations, so it is created (by the expression circle.ondiam(a,
n)) only when drawn.

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 2

http://www.amotlpaa.org

3 Running an Enkidu program

An Enkidu program foo.py should end with these lines:

if __name__ == ’__main__’:
main(f)

Then a command such as

python foo.py foo-fig

will produce files foo-fig.eps and foo-fig.tex.
The .tex file includes a LATEX picture environment which superimposes

any labels produced by f.label() onto the figure; the line drawing itself is in
the .eps file, and is included by the \includegraphics* command (from
the graphics package, which the including document must load).

The .tex file can be \input directly into your document.
PDFLATEX wants graphics files in PDF format instead of EPS. Standard tools

will convert foo-fig.eps to foo-fig.pdf; but the \includegraphics*
command in foo-fig.tex will then refer to the wrong file. In this situation,
invoke your Enkidu program with

python foo.py foo-fig pdf

The last argument specifies a “fake suffix”: with this command, foo-fig.eps
is created as usual, but the \includegraphics* command in foo-fig.tex
includes the file foo-fig.pdf. (It’s up to you to convert the EPS file into a
PDF before running PDFLATEX on your document.)

The Enkidu source distribution includes a complete example of how to use
Enkidu, to wit, the source for this document and all its figures, as well as a
Makefile for generating this PDF file from that source.

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 3

http://www.amotlpaa.org

4 Examples

The following examples demonstrate the basic facilities of Enkidu. The de-
tailed documentation for all Enkidu classes and functions is in the source code;
read it there or by way of the Python online help system.

The examples omit boilerplate and the second section (the creation of the
figure object) in each program; consult the source distribution for the com-
plete code.

The text accompanying the examples doesn’t discuss everything of interest
in every program; read the code.

4.1 Vector arithmetic

Vectors and points (Enkidu doesn’t distinguish) are represented by instances
of the vec class, which support the expected arithmetic operators.

vec.zero

uv

2*v u+v

-u

(v-u)/2

u = vec(2, 1)
v = vec(-1, 1)
vecs = [u, v, u+v, -u, (v-u)/2, 2*v]

for pt in vecs + [vec.zero]:
f.clipdot(pt)

for pt in vecs:
f.arrowtodot(vec.zero, pt)

f.dashed()
f.polyline(-u, v, u+v, u)
f.undashed()
f.label(’\\texttt{vec.zero}’, ’tl’, vec.zero)
f.label(’\\texttt{u}’, ’l’, u)
f.label(’\\texttt{v}’, ’b’, v)
f.label(’\\texttt{2*v}’, ’br’, 2*v)
f.label(’\\texttt{u+v}’, ’bl’, u+v)
f.label(’\\texttt{-u}’, ’tr’, -u)
f.label(’\\texttt{(v-u)/2}’, ’br’, (v-u)/2)

This example uses a single forward slash to divide a vec by an int (in the
expression (v-u)/2). This practice requires that future .division be
in effect; otherwise /2 is interpreted as integer division, which vecs do not
support.

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 4

http://www.amotlpaa.org

4.2 More vector arithmetic: orthogonal projection

vecs support many other operations, including, as shown below, dot product
and norm; see the online documentation for a complete list.

0

u

v

〈u,v〉
‖v‖2 v

〈u,v〉
‖u‖2 u

u = vec(2, 1)
v = vec(0, 1.5)
projuv = v*dot(u, v)/v.normsq
projvu = u*dot(u, v)/u.normsq
vecs = [u, v, projuv, projvu]

for pt in vecs + [vec.zero]:
f.clipdot(pt)

for pt in vecs:
f.arrowtodot(vec.zero, pt)

f.dashed()
f.polyline(u, projuv)
f.polyline(v, projvu)
f.undashed()
f.label(’0’, ’t’, vec.zero)
f.label(’u’, ’l’, u)
f.label(’v’, ’b’, v)
f.label(r’$\frac{\langle u,v\rangle}{\|v\|ˆ2}v$’, ’r’, projuv)
f.label(r’$\frac{\langle u,v\rangle}{\|u\|ˆ2}u$’, ’tl’, projvu)

As the last two lines illustrate, when many LATEX macros are needed in a label,
it is convenient to use the Python “raw string” syntax r’...’ to suppress the
usual interpretation of backslashes.

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 5

http://www.amotlpaa.org

4.3 Intersections: inversion as a composition of projections

This figure shows an interpretation of inversion as a composition of two stere-
ographic projections. The horizontal line is a plane, viewed edge-on, bisecting
a sphere at its equator; points A and B are the north and south poles of the
sphere. Let P be a point on the plane. Project P onto the sphere through the
north pole; that is, let Q be the (other) intersection of AP with the sphere. Then
project Q back onto the plane through the south pole; that is, let P ′ be the in-
tersection of BQ with the plane. Then, it turns out, P ′ is the inverse of P with
respect to the equator of the sphere.

A

B

P

Q

P ′

circ = circle(vec.zero, 1)
a = circ.pt(90)
b = circ.pt(-90)
p = circ.o - 2*vec(circ.r, 0)
q = withmax(distfrom(a), intersect(circ, join(p, a)))
p2 = meet(join(p, circ.o), join(q, b))

for pt in [a, b, p, q, p2]:
f.clipdot(pt)

f.circle(circ)
f.polyline(p, a, b, q)
f.line(join(p, circ.o))
f.label(’A’, ’b’, a)
f.label(’B’, ’t’, b)
f.label(’P’, ’b’, p)
f.label(’Q’, ’br’, q)
f.label("$P’$", ’bl’, p2)

The point p2 (P ′ in the figure) is the intersection of BQ with the horizontal
line; it is obtained with the meet function, which operates on lines and always
returns a point (unless the lines are parallel, in which case it raises an excep-
tion).

The point q is the intersection of AP with the circle; it is obtained with
the intersect function, which operates on lines and/or circles, and returns
a list of points of intersection. The line AP intersects the circle twice, at A
and at Q, so intersect returns a list containing those two points; the code
must determine which one is Q. The obvious way is to scan the list for an
element pt such that pt != a; but since floating point arithmetic is inexact,
it is not certain that the point in the list representing the intersection at A will
actually be equal to a in the sense of ==. The example takes a more reliable
course: q is chosen to be the point of intersection which is furthest from a.

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 6

http://www.amotlpaa.org

4.4 More intersections: line meets parabola

This figure shows a construction for finding an intersection P of the line ` with
the parabola with focus F and directrix d, or rather, a construction for the case
where ` and d meet.

Let ` and d meet at N. Pick any point Q on ` other than N. Draw a circle
centred at Q and tangent to d at Q ′. Join NF, meeting the circle at R. Draw PF
parallel to QR, meeting ` at P. Let P ′ be the foot of the perpendicular from P
to d. By parallels, PF : PP ′ = QR : QQ ′ = 1, and so P lies on the parabola as
well as on `.

P

P ′

Q

Q ′ N

F

R

d

`focus = vec(0, 1)
n = vec(1, 0)
q = vec(1/2, 2/9)
d = line.ptslope(n, 0)
ell = join(q, n)

qfoot = foot(q, d)
qcirc = circle(q, (qfoot - q).norm)
r = withmin(distfrom(n), intersect(qcirc, join(n, focus)))
p = meet(ell, parallel(focus, join(q, r)))
pfoot = foot(p, d)

for pt in [focus, n, p, pfoot, q, qfoot, r]:
f.clipdot(pt)

f.line(d)
f.line(ell)
f.polyline(n, focus, p, pfoot)
f.polyline(r, q, qfoot)
f.circle(qcirc)
f.rtangmark(q, qfoot, n)
f.rtangmark(p, pfoot, n)
f.label(’P’, ’b’, p)
f.label("\\rlap{$P’$}\", ’t’, pfoot)
f.label(’Q’, ’b’, q)
f.label("\\rlap{$Q’$}\", ’t’, qfoot)
f.label(’N’, ’t’, n)
f.label(’F’, ’b’, focus)
f.label(’R’, ’l’, r, offset=vec(0,3))
f.label(’d’, ’r’, leftmost(f.linelimits(d)))
f.label(’$\\ell$’, ’br’, leftmost(f.linelimits(ell)))

The line d is created by point and slope; the line ell is created by two
points; in the computation of p, a line is created by a point and a parallel line.
Other options exist; see the online documentation.

Note that, in the program, the lines ell and d are constructed from n and q,
reversing the procedure in the construction.

The \rlap-\phantom dance centres the labels P ′ and Q ′ nicely on the let-
ter; otherwise the ′ exerts an undue influence on the positioning.

Steven Taschuk · 2007 March 14 · http://www.amotlpaa.org 7

http://www.amotlpaa.org

	Introduction
	Typical structure of an Enkidu program
	Running an Enkidu program
	Examples
	Vector arithmetic
	More vector arithmetic: orthogonal projection
	Intersections: inversion as a composition of projections
	More intersections: line meets parabola

